交比不变性 matlab,交比 | 迪沙格定理

本文介绍了交比这一射影几何中的关键概念,并通过数学软件验证其在射影变换下的不变性。严格证明了交比的不变性,并利用该性质证明了迪沙格定理:两个三角形对应顶点连线交于一点,则对应边交点共线。
摘要由CSDN通过智能技术生成

原标题:交比 | 迪沙格定理

触碰标题下面一行中“邵勇老师”查看所有文章;触碰“数学教学研究”, 关注本微信公众号(sx100sy)。本公众号内容均由邵勇本人独创,欢迎转发,但未经许可不能转载。特别声明,本人未曾授权任何网站(包括微博)和公众号转载邵勇公众号的内容。每周推送两到三篇内容上有份量的数学文章,但在行文上力争做到深入浅出。几分钟便可读完,轻松学数学。

交比是射影几何中的关键概念。这个概念不太直观,我下面首先用数学软件验证交比在射影几何中不变性,然后严格证明交比确实是一个射影不变量。最后用交比的这种不变性去证明著名的迪沙格定理。

(1)交比的定义。有一条直线,上面依次有A、B、C、D四点,如下图所示。

a61ec302b150307ff4e60462c79bf20c.png

我们定义

6276c2e3d7c3ecf14516a060ae1be981.png

为四个有序点A、B、C、D的交比(也叫复比)。

我们这样定义这个概念是有原因的。如下图所示,上述直线上的这四个点A、B、C、D在中心射影下,依次被投影到另一条直线上的A'、B'、C'、D'。两点间的线段的长度显然在投影后改变了,比如AD一般不再等于A'D'了。并且两条线段的比值,在投影后也不再相等ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值