交比不变

交比不变

凡是接触过射影几何的人一定不会对交比(cross ratio)陌生,因为交比是射影变换(projectivity)最重要的不变量之一。在谈论交比之前,先回顾一下射影几何。射影变换是一种线性变换(实数矩阵 P \bm P P),将 n n n 维实空间的向量 X \bm X X 映射到 m m m 维实空间的向量 x \bm x x, 即 x = P X \bm{x}=\bm{PX} x=PX 。其中, P \bm P P ( m + 1 ) × ( n + 1 ) (m+1)\times(n+1) (m+1)×(n+1) 的齐次变换矩阵, X \bm X X x \bm x x 分别为维度 n + 1 n+1 n+1 m + 1 m+1 m+1 的齐次向量坐标。齐次坐标使用 n + 1 n+1 n+1 个有序数表示 n n n 维空间的向量 X \bm X X, 具有缩放不变性,即 X = s X \bm{X}=s\bm{X} X=sX, 其中 s s s 为非零实数。同样齐次变换矩阵 P \bm P P 也满足缩放不变性,即 P = s P \bm{P}=s\bm{P} P=sP 。当 P \bm P P 为方阵且满秩时,射影变换 x = P X \bm{x}=\bm{PX} x=PX 表示 n n n 维空间到自己的映射(非点点对应),变换可逆, x \bm x x X \bm X X 在射影变换下等价。此时变换 P \bm P P 也被称为单应性(Homography)。射影变换又被称为共线变换(collineation),即共线的点在射影变换下依然保持为共线点。一般意义下,射影变换、共线变换、单应变换说的是同一个意思。

下面在射影平面内引入交比。从二维平面到自己的射影变换 H \bm H H 为 3 阶方阵,变换 x ′ = H x \bm{x}'=\bm{Hx} x=Hx 将平面内的点按照共点直线投影的方式重新组织在一个平面内。在射影平面内,点和线均由三维齐次坐标表示,并且互为对偶元素(在三维空间中,点和面由四维齐次坐标表示,并互为对偶;线自对偶)。两个点确定一条直线,若直线 l \bm l l p 1 \bm{p}_1 p1 p 2 \bm{p}_2 p2 两点,则有 l = p 1 × p 2 \bm{l} = \bm{p}_1 \times \bm{p}_2 l=p1×p2 。在直线上的任何一点 p \bm{p} p 都可以由 p 1 \bm{p}_1 p1 p 2 \bm{p}_2 p2 的线性组合表示,即 p = u p 1 + v p 2 \bm{p}=u\bm{p}_1+v\bm{p}_2 p=up1+vp2, u u u v v v 为实数。这样就得到了直线上任意点的参数化坐标 p ^ = [ u , v ] T \hat{\bm{p}}=[u,v]^T p^=[u,v]T ,因此参考点的坐标为 p ^ 1 = [ 1 , 0 ] T ,   p ^ 2 = [ 0 , 1 ] T \hat{\bm{p}}_1=[1,0]^T,\ \hat{\bm{p}}_2=[0,1]^T p^1=[1,0]T, p^2=[0,1]T

共线点的交比

p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 是四个共线点,它们的参数化齐次坐标分别为 p ^ i = [ u i , v i ] T ,   i = 1 , 2 , 3 , 4 \hat{\bm{p}}_i=[u_i,v_i]^T,\ i=1,2,3,4 p^i=[ui,vi]T, i=1,2,3,4 。定义四点的交比为:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = det ⁡ ( p ^ 1 ,   p ^ 3 ) det ⁡ ( p ^ 2 ,   p ^ 4 ) det ⁡ ( p ^ 2 ,   p ^ 3 ) det ⁡ ( p ^ 1 ,   p ^ 4 ) (1) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) = \frac{\det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_3) \det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_4)} {\det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_3) \det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_4)} \tag{1} (p1, p2; p3, p4)=det(p^2, p^3)det(p^1, p^4)det(p^1, p^3)det(p^2, p^4)(1)
下面证明,共线点交比不依赖于参数化坐标(直线坐标系)的选择。

设直线上两个参考点的齐次坐标分别为 a ,   b \bm{a},\ \bm{b} a, b 。四个点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 在给定点 a \bm a a b \bm b b 的参数化坐标为 p ^ i = [ u i , v i ] T \hat{\bm{p}}_i=[u_i,v_i]^T p^i=[ui,vi]T 。选择另外两个参考点 a ′ \bm{a}' a b ′ \bm{b}' b ,以及四个点的参数化坐标 p ^ i ′ = [ u i ′ , v i ′ ] T \hat{\bm{p}}_i'=[u_i',v_i']^T p^i=[ui,vi]T 。令新的参考点 a ′ \bm{a}' a b ′ \bm{b}' b 在旧坐标系 a \bm a a b \bm b b 下的坐标分别为 a ^ ′ = [ α 1 , β 1 ] T ,   b ^ ′ = [ α 2 , β 2 ] T \hat{\bm{a}}'=[\alpha_1,\beta_1]^T,\ \hat{\bm{b}}'=[\alpha_2,\beta_2]^T a^=[α1,β1]T, b^=[α2,β2]T 。即 a ′ = α 1 a + β 1 b ,   b ′ = α 2 a + β 2 b \bm{a}'=\alpha_1\bm{a}+\beta_1\bm{b},\ \bm{b}'=\alpha_2\bm{a}+\beta_2\bm{b} a=α1a+β1b, b=α2a+β2b 。取 H = [ a ^ ′ ,   b ^ ′ ] \bm{H}=[\hat{\bm{a}}',\ \hat{\bm{b}}'] H=[a^, b^] ,显然 det ⁡ ( H ) ≠ 0 \det(\bm{H})\neq 0 det(H)=0 ,否则 a ^ ′ \hat{\bm{a}}' a^ b ^ ′ \hat{\bm{b}}' b^ 线性相关,从而 a ′ \bm{a}' a b ′ \bm{b}' b 重合成一个点。另外有 p i = u i ′ a ′ + v i ′ b ′ = ( α 1 u i ′ + α 2 v i ′ ) a + ( β 1 u i ′ + β 2 v i ′ ) b = u i a + v i b \bm{p}_i=u_i'\bm{a}'+v_i'\bm{b}'=(\alpha_1 u_i'+\alpha_2 v_i')\bm{a}+(\beta_1 u_i'+\beta_2 v_i')\bm{b}=u_i\bm{a}+v_i\bm{b} pi=uia+vib=(α1ui+α2vi)a+(β1ui+β2vi)b=uia+vib

得到坐标变换关系: u i = α 1 u i ′ + α 2 v i ′ ,   v i = β 1 u i ′ + β 2 v i ′ u_i=\alpha_1 u_i'+\alpha_2 v_i',\ v_i=\beta_1 u_i'+\beta_2 v_i' ui=α1ui+α2vi, vi=β1ui+β2vi ;即 p ^ i = H p ^ i ′ \hat{\bm{p}}_i=\bm{H}\hat{\bm{p}}_i' p^i=Hp^i 。代入交比定义式得到:
det ⁡ ( p ^ 1 ,   p ^ 3 ) det ⁡ ( p ^ 2 ,   p ^ 4 ) det ⁡ ( p ^ 2 ,   p ^ 3 ) det ⁡ ( p ^ 1 ,   p ^ 4 ) = det ⁡ ( H ( p ^ 1 ′ ,   p ^ 3 ′ ) ) det ⁡ ( H ( p ^ 2 ′ ,   p ^ 4 ′ ) ) det ⁡ ( H ( p ^ 2 ′ ,   p ^ 3 ′ ) ) det ⁡ ( H ( p ^ 1 ′ ,   p ^ 4 ′ ) ) = det ⁡ ( p ^ 1 ′ ,   p ^ 3 ′ ) det ⁡ ( p ^ 2 ′ ,   p ^ 4 ′ ) det ⁡ ( p ^ 2 ′ ,   p ^ 3 ′ ) det ⁡ ( p ^ 1 ′ ,   p ^ 4 ′ ) \frac{\det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_3) \det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_4)} {\det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_3) \det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_4)} =\frac{\det(\bm{H}(\hat{\bm{p}}_1',\ \hat{\bm{p}}_3')) \det(\bm{H}(\hat{\bm{p}}_2',\ \hat{\bm{p}}_4'))} {\det(\bm{H}(\hat{\bm{p}}_2',\ \hat{\bm{p}}_3')) \det(\bm{H}(\hat{\bm{p}}_1',\ \hat{\bm{p}}_4'))} =\frac{\det(\hat{\bm{p}}_1',\ \hat{\bm{p}}_3') \det(\hat{\bm{p}}_2',\ \hat{\bm{p}}_4')} {\det(\hat{\bm{p}}_2',\ \hat{\bm{p}}_3') \det(\hat{\bm{p}}_1',\ \hat{\bm{p}}_4')} det(p^2, p^3)det(p^1, p^4)det(p^1, p^3)det(p^2, p^4)=det(H(p^2, p^3))det(H(p^1, p^4))det(H(p^1, p^3))det(H(p^2, p^4))=det(p^2, p^3)det(p^1, p^4)det(p^1, p^3)det(p^2, p^4)
故四个共线点的交比不依赖于直线坐标系的选择。

由于交比不依赖于直线上的参考点,可以简化交比的计算。对于四个共线点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 ,可以将 p 1 \bm{p}_1 p1 p 2 \bm{p}_2 p2 选为参考点, p 3 \bm{p}_3 p3 p 4 \bm{p}_4 p4 的齐次坐标表示为: p 3 = p 1 + λ 1 p 2 ,   p 4 = p 1 + λ 2 p 2 \bm{p}_3=\bm{p}_1+\lambda_1\bm{p}_2,\ \bm{p}_4=\bm{p}_1+\lambda_2\bm{p}_2 p3=p1+λ1p2, p4=p1+λ2p2 。则有参数化坐标: p ^ 1 = [ 1 , 0 ] T ,   p ^ 2 = [ 0 , 1 ] T ,   p ^ 3 = [ 1 , λ 1 ] T ,   p ^ 4 = [ 1 , λ 2 ] T \hat{\bm{p}}_1=[1,0]^T,\ \hat{\bm{p}}_2=[0,1]^T,\ \hat{\bm{p}}_3=[1,\lambda_1]^T,\ \hat{\bm{p}}_4=[1,\lambda_2]^T p^1=[1,0]T, p^2=[0,1]T, p^3=[1,λ1]T, p^4=[1,λ2]T 。于是由 (1) 得:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = λ 1 λ 2 (2) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) = \frac{\lambda_1}{\lambda_2} \tag{2} (p1, p2; p3, p4)=λ2λ1(2)
这是常用的交比计算公式。

在直线上,点的自由度为 1,因此可以简化如下。选择直线上任意两个参考点 a \bm a a b \bm b b ,按照统一的方式对四个共线点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 进行参数化。即 p i = a + λ i b \bm{p}_i=\bm{a}+\lambda_i\bm{b} pi=a+λib, 其中 i = 1 , 2 , 3 , 4 i=1,2,3,4 i=1,2,3,4 。因此 p ^ i = [ 1 , λ i ] T \hat{\bm{p}}_i=[1,\lambda_i]^T p^i=[1,λi]T λ i \lambda_i λi 成为 p i \bm{p}_i pi 的一维坐标(同时 a ^ = [ 1 , 0 ] T ,   b ^ = [ 1 , ∞ ] T \hat{\bm{a}}=[1,0]^T,\ \hat{\bm{b}}=[1,\infty]^T a^=[1,0]T, b^=[1,]T)。于是有:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = det ⁡ ( p ^ 1 ,   p ^ 3 ) det ⁡ ( p ^ 2 ,   p ^ 4 ) det ⁡ ( p ^ 2 ,   p ^ 3 ) det ⁡ ( p ^ 1 ,   p ^ 4 ) = ( λ 3 − λ 1 ) ( λ 4 − λ 2 ) ( λ 3 − λ 2 ) ( λ 4 − λ 1 ) (3) \begin{aligned} (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) &= \frac{\det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_3)\det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_4)}{\det(\hat{\bm{p}}_2,\ \hat{\bm{p}}_3)\det(\hat{\bm{p}}_1,\ \hat{\bm{p}}_4)} \\ &=\frac{(\lambda_3-\lambda_1)(\lambda_4-\lambda_2)}{(\lambda_3-\lambda_2)(\lambda_4-\lambda_1)} \end{aligned} \tag{3} (p1, p2; p3, p4)=det(p^2, p^3)det(p^1, p^4)det(p^1, p^3)det(p^2, p^4)=(λ3λ2)(λ4λ1)(λ3λ1)(λ4λ2)(3)
在一维的直线上建立坐标轴,取 a \bm a a b \bm b b 点分别为原点和无穷远点。则齐次坐标为 a = [ 0 , 1 ] T ,   b = [ 1 , 0 ] T \bm{a}=[0,1]^T,\ \bm{b}=[1,0]^T a=[0,1]T, b=[1,0]T 。同上,直线上任一点 p = a + λ b \bm{p}=\bm{a}+\lambda\bm{b} p=a+λb λ \lambda λ p \bm p p 的一维笛卡尔坐标。四个共线点的交比为 ( p 1 ,   p 2 ;   p 3 ,   p 4 ) = ( λ 3 − λ 1 ) ( λ 4 − λ 2 ) ( λ 3 − λ 2 ) ( λ 4 − λ 1 ) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4)=\frac{(\lambda_3-\lambda_1)(\lambda_4-\lambda_2)}{(\lambda_3-\lambda_2)(\lambda_4-\lambda_1)} (p1, p2; p3, p4)=(λ3λ2)(λ4λ1)(λ3λ1)(λ4λ2) 。其中包含了明显的几何意义,如 λ 3 − λ 1 \lambda_3-\lambda_1 λ3λ1 表示点 p 1 \bm{p}_1 p1 p 3 \bm{p}_3 p3 的有向线段的长度。如图 1 所示,令 p 1 p 3 ‾ \overline{\bm{p}_1\bm{p}_3} p1p3 表示从 p 1 \bm{p}_1 p1 p 3 \bm{p}_3 p3 的有向线段长度,则交比化为:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = p 1 p 3 ‾ ⋅ p 2 p 4 ‾ p 2 p 3 ‾ ⋅ p 1 p 4 ‾ (4) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) = \frac{\overline{\bm{p}_1\bm{p}_3} \cdot \overline{\bm{p}_2\bm{p}_4}}{\overline{\bm{p}_2\bm{p}_3} \cdot \overline{\bm{p}_1\bm{p}_4}} \tag{4} (p1, p2; p3, p4)=p2p3p1p4p1p3p2p4(4)

cross ratio
图 1: 共线点与共点线束

共点直线的交比

根据对偶关系,若两条直线 l 1 \bm{l}_1 l1 l 2 \bm{l}_2 l2 交于一点 p \bm p p ,则 p = l 1 × l 2 \bm{p} = \bm{l}_1 \times \bm{l}_2 p=l1×l2 。经过定点 p \bm p p 的任何一条直线都可以由 l 1 \bm{l}_1 l1 l 2 \bm{l}_2 l2 的线性组合表示,即 l = u l 1 + v l 2 \bm{l} = u\bm{l}_1+v\bm{l}_2 l=ul1+vl2 ,记为参数化坐标 l ^ = [ u , v ] T \hat{\bm{l}}=[u,v]^T l^=[u,v]T 。与定义共线点的交比一样,也可以定义四条共点直线的交比。设 l 1 ,   l 2 ,   l 3 ,   l 4 \bm{l}_1,\ \bm{l}_2,\ \bm{l}_3,\ \bm{l}_4 l1, l2, l3, l4 是过定点的直线束中四条不同直线。它们在某两条参考直线下的参数化齐次坐标为 l ^ i = [ u i , v i ] T \hat{\bm{l}}_i=[u_i,v_i]^T l^i=[ui,vi]T 。定义四条共点直线的交比为:

( l 1 ,   l 2 ;   l 3 ,   l 4 ) = det ⁡ ( l ^ 1 ,   l ^ 3 ) det ⁡ ( l ^ 2 ,   l ^ 4 ) det ⁡ ( l ^ 2 ,   l ^ 3 ) det ⁡ ( l ^ 1 ,   l ^ 4 ) (5) (\bm{l}_1,\ \bm{l}_2;\ \bm{l}_3,\ \bm{l}_4) = \frac{\det(\hat{\bm{l}}_1,\ \hat{\bm{l}}_3)\det(\hat{\bm{l}}_2,\ \hat{\bm{l}}_4)}{\det(\hat{\bm{l}}_2,\ \hat{\bm{l}}_3)\det(\hat{\bm{l}}_1,\ \hat{\bm{l}}_4)} \tag{5} (l1, l2; l3, l4)=det(l^2, l^3)det(l^1, l^4)det(l^1, l^3)det(l^2, l^4)(5)
类似的,四条共点直线的交比也不依赖于直线束的参数化选择。对于四条共点直线 l 1 ,   l 2 ,   l 3 ,   l 4 \bm{l}_1,\ \bm{l}_2,\ \bm{l}_3,\ \bm{l}_4 l1, l2, l3, l4, 将 l 1 \bm{l}_1 l1 l 2 \bm{l}_2 l2 选为参考直线, l 3 \bm{l}_3 l3 l 4 \bm{l}_4 l4 的齐次坐标表示为: l 3 = l 1 + λ 1 l 2 ,   l 4 = l 1 + λ 2 l 2 \bm{l}_3=\bm{l}_1+\lambda_1\bm{l}_2,\ \bm{l}_4=\bm{l}_1+\lambda_2\bm{l}_2 l3=l1+λ1l2, l4=l1+λ2l2 。则共点直线的交比也可以简化为:

( l 1 ,   l 2 ;   l 3 ,   l 4 ) = λ 1 λ 2 (6) (\bm{l}_1,\ \bm{l}_2;\ \bm{l}_3,\ \bm{l}_4) = \frac{\lambda_1}{\lambda_2} \tag{6} (l1, l2; l3, l4)=λ2λ1(6)
如图 1 所示,设 O \bm O O 点的齐次坐标为 [ x 0 , y 0 , 1 ] T [x_0,y_0,1]^T [x0,y0,1]T ;过 O \bm O O 点平行于 x x x 轴的直线 m \bm m m 的方程为 y = y 0 y=y_0 y=y0, 即 m = [ 0 , 1 , − y 0 ] T \bm{m}=[0,1,-y_0]^T m=[0,1,y0]T; 过 O \bm O O 点平行于 y y y 轴的直线 n \bm n n 的方程为 x = x 0 x=x_0 x=x0, 即 n = [ 1 , 0 , − x 0 ] T \bm{n}=[1,0,-x_0]^T n=[1,0,x0]T 。令四条共点直线 l 1 ,   l 2 ,   l 3 ,   l 4 \bm{l}_1,\ \bm{l}_2,\ \bm{l}_3,\ \bm{l}_4 l1, l2, l3, l4 的斜率分别为 k 1 ,   k 2 ,   k 3 ,   k 4 \bm{k}_1,\ \bm{k}_2,\ \bm{k}_3,\ \bm{k}_4 k1, k2, k3, k4, 则直线 l 1 \bm{l}_1 l1 的方程为 y − y 0 = k 1 ( x − x 0 ) y-y_0=k_1(x-x_0) yy0=k1(xx0), 因此 l 1 = [ − k 1 , 1 , k 1 x 0 − y 0 ] T = m − k 1 n \bm{l}_1=[-k_1,1,k_1x_0-y_0]^T=\bm{m}-k_1\bm{n} l1=[k1,1,k1x0y0]T=mk1n, 参数化坐标 l 1 = [ 1 , − k 1 ] T \bm{l}_1=[1,-k_1]^T l1=[1,k1]T 。同理 l 2 = [ 1 , − k 2 ] T ,   l 3 = [ 1 , − k 3 ] T ,   l 4 = [ 1 , − k 4 ] T \bm{l}_2=[1,-k_2]^T,\ \bm{l}_3=[1,-k_3]^T,\ \bm{l}_4=[1,-k_4]^T l2=[1,k2]T, l3=[1,k3]T, l4=[1,k4]T 。代入直线的交比定义式得:

( l 1 ,   l 2 ;   l 3 ,   l 4 ) = ( k 1 − k 3 ) ( k 2 − k 4 ) ( k 2 − k 3 ) ( k 1 − k 4 ) (7) (\bm{l}_1,\ \bm{l}_2;\ \bm{l}_3,\ \bm{l}_4) = \frac{(\bm{k}_1-\bm{k}_3)(\bm{k}_2-\bm{k}_4)}{(\bm{k}_2-\bm{k}_3)(\bm{k}_1-\bm{k}_4)} \tag{7} (l1, l2; l3, l4)=(k2k3)(k1k4)(k1k3)(k2k4)(7)
由上式可知,共点直线的交比由其夹角决定。令 l 1 l 3 ^ \widehat{\bm{l}_1\bm{l}_3} l1l3 表示直线 l 1 \bm{l}_1 l1 l 3 \bm{l}_3 l3 的有向夹角,根据 (7) 可以证明:

( l 1 ,   l 2 ;   l 3 ,   l 4 ) = sin ⁡ ( l 1 l 3 ^ ) sin ⁡ ( l 2 l 4 ^ ) sin ⁡ ( l 2 l 3 ^ ) sin ⁡ ( l 1 l 4 ^ ) (8) (\bm{l}_1,\ \bm{l}_2;\ \bm{l}_3,\ \bm{l}_4) = \frac{\sin(\widehat{\bm{l}_1\bm{l}_3})\sin(\widehat{\bm{l}_2\bm{l}_4})}{\sin(\widehat{\bm{l}_2\bm{l}_3})\sin(\widehat{\bm{l}_1\bm{l}_4})} \tag{8} (l1, l2; l3, l4)=sin(l2l3 )sin(l1l4 )sin(l1l3 )sin(l2l4 )(8)

共线点的交比等价于共点直线的交比

如图 1,选择 l 1 \bm{l}_1 l1 l 2 \bm{l}_2 l2 为参考直线,取 l 3 = l 1 + λ 1 l 2 ,   l 4 = l 1 + λ 2 l 2 \bm{l}_3=\bm{l}_1+\lambda_1\bm{l}_2,\ \bm{l}_4=\bm{l}_1+\lambda_2\bm{l}_2 l3=l1+λ1l2, l4=l1+λ2l2 。则有 p 1 = l × l 1 ,   p 2 = l × l 2 \bm{p}_1=\bm{l}\times\bm{l}_1,\ \bm{p}_2=\bm{l}\times\bm{l}_2 p1=l×l1, p2=l×l2, p 3 = l × l 3 = l × ( l 1 + λ 1 l 2 ) = p 1 + λ 1 p 2 \bm{p}_3=\bm{l}\times\bm{l}_3=\bm{l}\times(\bm{l}_1+\lambda_1\bm{l}_2)=\bm{p}_1+\lambda_1\bm{p}_2 p3=l×l3=l×(l1+λ1l2)=p1+λ1p2, p 4 = l × l 4 = l × ( l 1 + λ 2 l 2 ) = p 1 + λ 2 p 2 \bm{p}_4=\bm{l}\times\bm{l}_4=\bm{l}\times(\bm{l}_1+\lambda_2\bm{l}_2)=\bm{p}_1+\lambda_2\bm{p}_2 p4=l×l4=l×(l1+λ2l2)=p1+λ2p2 。由 (2) 和 (6) 可知:

( l 1 ,   l 2 ;   l 3 ,   l 4 ) = λ 1 λ 2 = ( p 1 ,   p 2 ;   p 3 ,   p 4 ) (9) (\bm{l}_1,\ \bm{l}_2;\ \bm{l}_3,\ \bm{l}_4) = \frac{\lambda_1}{\lambda_2} = (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) \tag{9} (l1, l2; l3, l4)=λ2λ1=(p1, p2; p3, p4)(9)
此式验证了共线点交比与共点直线交比等价。

射影变换下的交比不变性

假设有射影变换 H \bm H H 将空间点 x \bm x x 映射为 x ′ \bm{x}' x, 即 x ′ = H x \bm{x}'=\bm{Hx} x=Hx 。直线 l \bm l l 上的四个点 p 1 ,   p 2 ,   p 3 ,   p 4 \bm{p}_1,\ \bm{p}_2,\ \bm{p}_3,\ \bm{p}_4 p1, p2, p3, p4 被映射为直线 l’上的四个点 p 1 ′ ,   p 2 ′ ,   p 3 ′ ,   p 4 ′ \bm{p}_1',\ \bm{p}_2',\ \bm{p}_3',\ \bm{p}_4' p1, p2, p3, p4 。其中 p i ′ = H p i ,   i = 1 , 2 , 3 , 4 \bm{p}_i'=\bm{Hp}_i,\ i=1,2,3,4 pi=Hpi, i=1,2,3,4 。在直线 l ′ \bm{l}' l 上选择 p 1 ′ \bm{p}_1' p1 p 2 ′ \bm{p}_2' p2 为参考点,取 p 3 ′ = p 1 ′ + λ 1 p 2 ′ ,   p 4 ′ = p 1 ′ + λ 2 p 2 ′ \bm{p}_3'=\bm{p}_1'+\lambda_1\bm{p}_2',\ \bm{p}_4'=\bm{p}_1'+\lambda_2\bm{p}_2' p3=p1+λ1p2, p4=p1+λ2p2, 则经过射影变换后四个共线点的交比为:
( p 1 ′ ,   p 2 ′ ;   p 3 ′ ,   p 4 ′ ) = λ 1 λ 2 (\bm{p}_1',\ \bm{p}_2';\ \bm{p}_3',\ \bm{p}_4') = \frac{\lambda_1}{\lambda_2} (p1, p2; p3, p4)=λ2λ1
又因为 p 3 ′ = p 1 ′ + λ 1 p 2 ′ = H ( p 1 + λ 1 p 2 ) = H p 3 \bm{p}_3'=\bm{p}_1'+\lambda_1\bm{p}_2'=\bm{H}(\bm{p}_1+\lambda_1\bm{p}_2)=\bm{Hp}_3 p3=p1+λ1p2=H(p1+λ1p2)=Hp3, p 4 ′ = p 1 ′ + λ 2 p 2 ′ = H ( p 1 + λ 2 p 2 ) = H p 4 \bm{p}_4'=\bm{p}_1'+\lambda_2\bm{p}_2'=\bm{H}(\bm{p}_1+\lambda_2\bm{p}_2)=\bm{Hp}_4 p4=p1+λ2p2=H(p1+λ2p2)=Hp4 。单应变换 H \bm H H 可逆,所以得到 p 3 = p 1 + λ 1 p 2 ,   p 4 = p 1 + λ 2 p 2 \bm{p}_3=\bm{p}_1+\lambda_1\bm{p}_2,\ \bm{p}_4=\bm{p}_1+\lambda_2\bm{p}_2 p3=p1+λ1p2, p4=p1+λ2p2 。相应的,在 l \bm l l 上取 p 1 \bm{p}_1 p1 p 2 \bm{p}_2 p2 为参考点,则变换前四个共线点的交比:

( p 1 ,   p 2 ;   p 3 ,   p 4 ) = λ 1 λ 2 = ( p 1 ′ ,   p 2 ′ ;   p 3 ′ ,   p 4 ′ ) (10) (\bm{p}_1,\ \bm{p}_2;\ \bm{p}_3,\ \bm{p}_4) = \frac{\lambda_1}{\lambda_2} = (\bm{p}_1',\ \bm{p}_2';\ \bm{p}_3',\ \bm{p}_4') \tag{10} (p1, p2; p3, p4)=λ2λ1=(p1, p2; p3, p4)(10)
故交比是射影变换的不变量。

参考书

Richard Hartley, Andrew Zisserman. Multiple view geometry in computer vision (second edition)[M]. New York: Cambridge University Press, 2004:25-46.

吴福朝. 计算机视觉中的数学方法[M]. 北京:科学出版社, 2008:5-7.

  • 16
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值