交比不变性证明

博客先借助三角形面积证明四个有序点交比 BC⋅AD/AC⋅BD = bc⋅ad/ac⋅bd,分别在世界坐标和像素坐标中推导。还介绍了工业镜头,它是机器视觉核心硬件,可分多种类型,并阐述其工作距离、焦距、景深、视野等基础参数及相关关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

A C B C / A D B D 为四个有序点的交比,求证 A C ⋅ B D B C ⋅ A D = a c ⋅ b d b c ⋅ a d 。 \frac{AC }{BC} / \frac{AD }{BD} 为四个有序点的交比,求证 \frac{AC \cdot BD}{BC \cdot AD} = \frac{ac \cdot bd}{bc \cdot ad}。 BCAC/BDAD为四个有序点的交比,求证BCADACBD=bcadacbd
借助三角形的面积证明。
世界坐标中:
S Δ P A C = 1 2 ⋅ A C ⋅ H = 1 2 ⋅ P A ⋅ P C ⋅ sin ⁡ ∠ A P C ⇒ A C = P A ⋅ P C H ⋅ sin ⁡ ∠ A P C S Δ P B C = 1 2 ⋅ B C ⋅ H = 1 2 ⋅ P B ⋅ P C ⋅ sin ⁡ ∠ B P C ⇒ B C = P B ⋅ P C H ⋅ sin ⁡ ∠ B P C S Δ P B D = 1 2 ⋅ B D ⋅ H = 1 2 ⋅ P B ⋅ P D ⋅ sin ⁡ ∠ B P D ⇒ B D = P B ⋅ P D H ⋅ sin ⁡ ∠ B P D S Δ P A D = 1 2 ⋅ A D ⋅ H = 1 2 ⋅ P A ⋅ P D ⋅ sin ⁡ ∠ A P D ⇒ A D = P A ⋅ P D H ⋅ sin ⁡ ∠ A P D S_{\Delta PAC} = \frac{1}{2} \cdot AC \cdot H = \frac{1}{2} \cdot PA \cdot PC \cdot \sin{\angle APC} \\ \Rightarrow AC = \frac{PA \cdot PC}{H} \cdot \sin{\angle APC} \\ {}\\ S_{\Delta PBC} = \frac{1}{2} \cdot BC \cdot H = \frac{1}{2} \cdot PB \cdot PC \cdot \sin{\angle BPC} \\ \Rightarrow BC = \frac{PB \cdot PC}{H} \cdot \sin{\angle BPC}\\ {}\\ S_{\Delta PBD} = \frac{1}{2} \cdot BD \cdot H = \frac{1}{2} \cdot PB \cdot PD \cdot \sin{\angle BPD} \\ \Rightarrow BD = \frac{PB \cdot PD}{H} \cdot \sin{\angle BPD}\\ {}\\ S_{\Delta PAD} = \frac{1}{2} \cdot AD \cdot H = \frac{1}{2} \cdot PA \cdot PD \cdot \sin{\angle APD} \\\Rightarrow AD = \frac{PA \cdot PD}{H} \cdot \sin{\angle APD} SΔPAC=21ACH=21PAPCsinAPCAC=HPAPCsinAPCSΔPBC=21BCH=21PBPCsinBPCBC=HPBPCsinBPCSΔPBD=21BDH=21PBPDsinBPDBD=HPBPDsinBPDSΔPAD=21ADH=21PAPDsinAPDAD=HPAPDsinAPD
A C ⋅ B D B C ⋅ A D = P A ⋅ P B ⋅ P C ⋅ P D H 2 ⋅ sin ⁡ ∠ A P C ⋅ sin ⁡ ∠ B P D P A ⋅ P B ⋅ P C ⋅ P D H 2 ⋅ sin ⁡ ∠ B P C ⋅ sin ⁡ ∠ A P D = sin ⁡ ∠ A P C ⋅ sin ⁡ ∠ B P D sin ⁡ ∠ B P C ⋅ sin ⁡ ∠ A P D \begin{aligned} \frac{AC \cdot BD}{BC \cdot AD} &= \frac{\frac{PA \cdot PB\cdot PC\cdot PD}{H^2} \cdot \sin{\angle APC} \cdot \sin{\angle BPD}}{\frac{PA \cdot PB\cdot PC\cdot PD}{H^2} \cdot \sin{\angle BPC} \cdot \sin{\angle APD}} \\ &= \frac{\sin{\angle APC} \cdot \sin{\angle BPD}}{\sin{\angle BPC} \cdot \sin{\angle APD}} \end{aligned} BCADACBD=H2PAPBPCPDsinBPCsinAPDH2PAPBPCPDsinAPCsinBPD=sinBPCsinAPDsinAPCsinBPD

像素坐标中:
S Δ P a c = 1 2 ⋅ a c ⋅ h = 1 2 ⋅ P a ⋅ P c ⋅ sin ⁡ ∠ a P c ⇒ a c = P a ⋅ P c h ⋅ sin ⁡ ∠ a P c S Δ P b c = 1 2 ⋅ b c ⋅ h = 1 2 ⋅ P b ⋅ P c ⋅ sin ⁡ ∠ b P c ⇒ b c = P b ⋅ P c h ⋅ sin ⁡ ∠ b P c S Δ P b d = 1 2 ⋅ b d ⋅ h = 1 2 ⋅ P b ⋅ P d ⋅ sin ⁡ ∠ b P d ⇒ b d = P b ⋅ P d h ⋅ sin ⁡ ∠ b P d S Δ P a d = 1 2 ⋅ a d ⋅ h = 1 2 ⋅ P a ⋅ P d ⋅ sin ⁡ ∠ a P d ⇒ a d = P a ⋅ P d h ⋅ sin ⁡ ∠ a P d S_{\Delta Pac} = \frac{1}{2} \cdot ac \cdot h = \frac{1}{2} \cdot Pa \cdot Pc \cdot \sin{\angle aPc} \\ \Rightarrow ac = \frac{Pa \cdot Pc}{h} \cdot \sin{\angle aPc} \\ {}\\ S_{\Delta Pbc} = \frac{1}{2} \cdot bc \cdot h = \frac{1}{2} \cdot Pb \cdot Pc \cdot \sin{\angle bPc} \\ \Rightarrow bc = \frac{Pb \cdot Pc}{h} \cdot \sin{\angle bPc}\\ {}\\ S_{\Delta Pbd} = \frac{1}{2} \cdot bd \cdot h = \frac{1}{2} \cdot Pb \cdot Pd \cdot \sin{\angle bPd} \\ \Rightarrow bd = \frac{Pb \cdot Pd}{h} \cdot \sin{\angle bPd}\\ {}\\ S_{\Delta Pad} = \frac{1}{2} \cdot ad \cdot h = \frac{1}{2} \cdot Pa \cdot Pd \cdot \sin{\angle aPd} \\\Rightarrow ad = \frac{Pa \cdot Pd}{h} \cdot \sin{\angle aPd} SΔPac=21ach=21PaPcsinaPcac=hPaPcsinaPcSΔPbc=21bch=21PbPcsinbPcbc=hPbPcsinbPcSΔPbd=21bdh=21PbPdsinbPdbd=hPbPdsinbPdSΔPad=21adh=21PaPdsinaPdad=hPaPdsinaPd
a c ⋅ b d b c ⋅ a d = P a ⋅ P b ⋅ P c ⋅ P d h 2 ⋅ sin ⁡ ∠ a P c ⋅ sin ⁡ ∠ b P d P a ⋅ P b ⋅ P c ⋅ P d h 2 ⋅ sin ⁡ ∠ b P c ⋅ sin ⁡ ∠ a P d = sin ⁡ ∠ a P c ⋅ sin ⁡ ∠ b P d sin ⁡ ∠ b P c ⋅ sin ⁡ ∠ a P d \begin{aligned} \frac{ac \cdot bd}{bc \cdot ad} &= \frac{\frac{Pa \cdot Pb\cdot Pc\cdot Pd}{h^2} \cdot \sin{\angle aPc} \cdot \sin{\angle bPd}}{\frac{Pa \cdot Pb\cdot Pc\cdot Pd}{h^2} \cdot \sin{\angle bPc} \cdot \sin{\angle aPd}} \\ &= \frac{\sin{\angle aPc} \cdot \sin{\angle bPd}}{\sin{\angle bPc} \cdot \sin{\angle aPd}} \end{aligned} bcadacbd=h2PaPbPcPdsinbPcsinaPdh2PaPbPcPdsinaPcsinbPd=sinbPcsinaPdsinaPcsinbPd
∵ sin ⁡ ∠ A P C = sin ⁡ ∠ a P c sin ⁡ ∠ B P D = sin ⁡ ∠ b P d sin ⁡ ∠ B P C = sin ⁡ ∠ b P c sin ⁡ ∠ A P D = sin ⁡ ∠ a P d ∴ A C ⋅ B D B C ⋅ A D = a c ⋅ b d b c ⋅ a d \begin {aligned} \because \sin{\angle APC} &= \sin{\angle aPc} \\ \sin{\angle BPD} &= \sin{\angle bPd} \\ \sin{\angle BPC} &= \sin{\angle bPc} \\ \sin{\angle APD} &= \sin{\angle aPd} \\ \therefore \frac{AC \cdot BD}{BC \cdot AD} &= \frac{ac \cdot bd}{bc \cdot ad} \end{aligned} sinAPCsinBPDsinBPCsinAPDBCADACBD=sinaPc=sinbPd=sinbPc=sinaPd=bcadacbd

工业镜头
参考文献
工业镜头是运用于工业自动化领域的摄像或摄影镜头,主要作用是进行光学成像。

工业镜头是机器视觉中必不可少的核心基础硬件,对成像的质量有关键影响。可以分为fa镜头(也有称CCTV镜头)、变倍镜头(有手动也有自动)、远心镜头(一般有物方远心和双远心)等。

基础参数
1.工作距离WD:指镜头下端到物体表面的距离。

机器视觉光学系统所需要的空间,不仅要考虑相机镜头组本身的长度,还要留下镜头的工作距离。如果空间无法满足这两者之和,应该立即考虑棱镜改变工作方向,或是重新定制光学系统。

2.焦距:镜头到成像面的距离。

3.景深DOF:镜头能够看清的纵深范围。

景深与焦距的关系是:焦距越长,景深越小;焦距越短,景深越大。

景深与工作距离的关系是:工作距离越短,镜头离物体越近,景深越小,反之则越大。

4.视野FOV:指镜头能够看到的最大范围。简单来说就是镜头能够正常进行检测工作的区域。

对于大面积检测,选择大视野的镜头能够显著地节省检测成本。但是选择时也要兼具分辨率,大视野很容易发生视野边缘灰度值不足的情况,一定要找专业光学定制!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值