N-BEATS

这篇博客介绍了N-BEATS模型,这是一种用于可解释时间序列预测的神经网络方法。N-BEATS通过分解序列成可解释的基函数来实现预测,并且由于其模块化结构,可以适应不同领域的应用。文中提到了通用模型可能需要更多块以捕获复杂性,而可解释性方法则倾向于利用先验知识。同时,博客还讨论了细粒度时间数据的不稳定性问题。链接提供了模型的GitHub实现和论文分享。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### N-BEATS与LSTM模型结合的方法 #### 方法概述 为了提升时间序列预测的效果,可以考虑将N-BEATS模型与长短期记忆(LSTM)网络相结合。这种组合能够充分利用两种架构的优势:N-BEATS擅长捕捉复杂的模式并提供可解释性的输出[^2];而LSTM则以其处理长期依赖关系的能力著称。 #### 结合策略 一种可能的方式是在特征提取阶段引入LSTM层来捕获输入序列中的长时间跨度特性,随后利用N-BEATS作为最终的回归器来进行预测。具体来说: - **预训练LSTM编码器**:先单独训练一个或多个LSTM单元组成的编码器部分,使其学习到有效的表示形式。 - **融合机制设计**:通过连接操作或者其他方式将经过LSTM变换后的隐藏状态传递给N-BEATS模块,让后者在此基础上继续优化预测结果。 - **联合调优过程**:当两个组件都准备好之后,可以通过端到端的学习框架共同微调参数,确保整体结构达到最佳性能表现。 ```python import torch from torch import nn class LSTMEncoder(nn.Module): def __init__(self, input_size=10, hidden_size=50, num_layers=2): super(LSTMEncoder, self).__init__() self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers) def forward(self, x): output, (hn, cn) = self.lstm(x) return hn[-1] class NBETSLSTMModel(nn.Module): def __init__(self, lstm_encoder, nbeats_model): super(NBETSLSTMModel, self).__init__() self.encoder = lstm_encoder self.nbeats = nbeats_model def forward(self, x): encoded_features = self.encoder(x.unsqueeze(-1)) prediction = self.nbeats(encoded_features.view(1,-1)).squeeze() return prediction ``` 上述代码片段展示了一个简单的实现方案,其中`NBETSLSTMModel`类定义了如何把LSTM编码得到的信息喂入已有的N-BEATS实例中去完成预测任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值