GPT-4 Turbo问世,API更划算,128K上下文窗口引领新时代

GPT-4 Turbo具有更便宜的API和更长的128K上下文窗口。

微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩

图片

一、简介

在发布GPT-4(点击了解GPT-4)仅仅八个月后,OpenAI推出了更新的模型GPT-4 Turbo,该模型具有可以在一次提示中容纳300页书的上下文窗口,并且提供更便宜的API访问。

《GPT-4已来,Python API使用最新版GPT》(点击查看GPT-4 API)

【GPT-4 Turbo】:https://openai.com/blog/new-models-and-developer-products-announced-at-devday

图片

二、GPT-4 Turbo的新功能有哪些?

以下是GPT-4 Turbo的主要特点:

  • 128K上下文窗口(比GPT-4大16倍)。

  • 与GPT-4相比,输入token的价格降低了3倍,输出token的价格降低了2倍。

  • 它具有截至2023年4月的知识(GPT-4的知识截止日期为2022年1月)。

【GPT-4 Turbo价格】:https://openai.com/pricing#gpt-4-turbo

三、如何访问?

对于付费用户,GPT-4 Turbo现在是ChatGPT中默认使用的模型。如果拥有OpenAI账户并已经获得了GPT-4的访问权限,可以通过在Playground上切换到gpt-4-11-6-preview模型来访问新模型。

图片

OpenAI Playground截图

GPT-4 Turbo对于所有付费开发者来说都是可用的,可以通过在API中传递gpt-4-1106-preview来尝试。以下是使用JavaScript的聊天完成请求示例:

import OpenAI from "openai";

const openai = new OpenAI();

async function main() {
  const completion = await openai.chat.completions.create({
    messages: [{ role: "system", content: "You are a helpful assistant." }],
    model: "gpt-4-1106-preview",
  });

  console.log(completion.choices[0]);
}

main();

以下是使用Python实现的方法:

from openai import OpenAI
client = OpenAI()

completion = client.chat.completions.create(
  model="gpt-4-1106-preview",
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Hello!"}
  ]
)

print(completion.choices[0].message)

四、API定价

作为开发者,降低定价是最令人兴奋的一项更新。OpenAI已将输入token的价格降低了3倍,将输出token的价格降低了2倍。这使得新模型对于规模较小的开发者和初创公司更加易于获取。

GPT-4 Turbo的API价格:

图片

OpenAI GPT-4 Turbo定价

之前的GPT-4 API价格:

图片

OpenAI GPT-4定价

token是用于自然语言处理的词片段。对于英文文本,1个token大约等于4个字符或0.75个单词。

此外,ChatGPT API的访问费用与ChatGPT Plus订阅费用是分开计费的。用户可以在OpenAI账户的使用页面上监控自己的使用情况。

图片

OpenAI使用情况界面

五、自动切换工具

在最新的ChatGPT用户界面中,下拉菜单已经消失了。它被替换为仅有的三个选项:GPT-4、GPT-3.5和插件。

图片

ChatGPT模型选择

现在,GPT-4 Turbo可自动为用户选择合适的工具。

“我们听到了用户的反馈。那个模型选择器真的很烦人。” —— Sam Altman

例如,如果用户要求AI生成一张图片,它现在会聪明地使用Dall-E 3来生成图片。

六、最后的思考

总的来说,很高兴看到OpenAI在语言模型方面的快速创新。它们无疑是令人兴奋的,为基于GPT的创新应用提供了广泛的可能性。

然而,思考一下OpenAI的战略方法也很有意思。最初,OpenAI发布了他们的API,允许开发者进行构建和创新,实际上承担了早期采用和用户参与的风险。事实证明,OpenAI 的这一举措是明智之举,因为它不仅培养了一个多样化的应用生态系统,还为他们提供了对最受需求的功能的洞察。

现在,OpenAI似乎正在有选择地将这些受欢迎的功能直接集成到他们的平台中,有效地精选了社区开发的最佳产品和服务。

推荐书单

《面向移动设备的深度学习—基于TensorFlow Lite,ML Kit和Flutter》

《面向移动设备的深度学习—基于TensorFlow Lite,ML Kit和Flutter》详细阐述了与移动设备深度学习开发相关的基本解决方案,主要包括使用设备内置模型执行人脸检测、开发智能聊天机器人、识别植物物种、生成实时字幕、构建人工智能认证系统、使用AI生成音乐、基于强化神经网络的国际象棋引擎、构建超分辨率图像应用程序等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。

本书适合作为高等院校计算机及相关专业的教材和教学参考书,也可作为相关开发人员的自学用书和参考手册。

《面向移动设备的深度学习—基于TensorFlow Lite,ML Kit和Flutter》icon-default.png?t=N7T8https://item.jd.com/14001258.html

精彩回顾

《使用Ray创建高效的深度学习数据管道》

《使用Ray轻松进行Python分布式计算》

《AI编程,详细比较GitHub Copilot对比Amazon CodeWhisperer》

《一文读懂全新深度学习库Rust Burn》

《手把手教你使用Python从零开始搭建感知器》

《5种在数据科学中使用ChatGPT代码解释器的方法》

微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩

访问【IT今日热榜】,发现每日技术热点

内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、query和getType的具体功能与应用场景。文档还深入讲解了Uri的结构和作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信和安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念和主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信和安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解和实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试和测试,确保对每个知识点都有深刻的理解。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导和学校领导的账号创建、权限分配等。 数据维护:管理员可以动态新和维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名和密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问和操作其权限范围内的功能和数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露和非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批和院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生和审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期和请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课和请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导和学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任和院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
使用gpt-3.5-turbo api实现上下文关联回答的功能,需要先了解一下gpt-3.5-turbo api的调用方式和参数设置。 首先,我们需要在OpenAI平台上注册一个账号,然后创建一个gpt-3.5-turbo api的应用程序,并获取API密钥。 接下来,我们可以使用Python编程语言来调用gpt-3.5-turbo api,具体步骤如下: 1. 安装OpenAI的Python SDK,可以使用以下命令进行安装: ```python pip install openai ``` 2. 导入OpenAI的Python SDK,并设置API密钥: ```python import openai openai.api_key = "YOUR_API_KEY" ``` 3. 设置gpt-3.5-turbo api的参数,包括模型ID、上下文、提示文本等: ```python model_engine = "text-davinci-002" # 模型ID context = "I am a student." # 上下文 prompt = "What do you think about the student?" # 提示文本 ``` 4. 调用gpt-3.5-turbo api,获取回答结果: ```python response = openai.Completion.create( engine=model_engine, prompt=prompt, max_tokens=100, n=1, stop=None, temperature=0.5, context=context ) answer = response.choices[0].text.strip() ``` 在上面的代码中,我们使用了OpenAI的Python SDK提供的Completion.create()方法来调用gpt-3.5-turbo api,其中max_tokens参数表示生成的文本长度,n参数表示生成的文本数量,stop参数表示停止字符,temperature参数表示温度值,context参数表示上下文。 最后,我们可以将回答结果输出到屏幕上或者保存到本地文件中: ```python print(answer) ``` 以上就是使用gpt-3.5-turbo api实现上下文关联回答的简单步骤,需要注意的是,对于不同的应用场景,可能需要调整不同的参数来达到好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值