群同态基本定理证明_代数Artin(九): 线性群

——————————————— 完更撒花~(8/8)———————————————

[参考文献] Michael Artin: Algebra (2nd Edition)

1 典型群

[线性群] 一般线性群

的子群称为
线性群矩阵群
  • 其中最重要的是:特殊线性群,正交群,酉群,辛群——典型群

[特殊线性群

]
行列式为
的实矩阵的群:

[正交群

]
是使得
的实矩阵的群:
  • 正交矩阵所作的基变换保持
    上的点积

[酉群

]
是使得
的复矩阵的群:
  • 酉矩阵所做的基变换保持
    上的标准Hermitian积

[辛群

]
上的保持斜对称型
的实矩阵的群,其中S

[洛伦兹群] 是保持洛伦兹型的实矩阵的群

  • 由这些矩阵表示的线性算子叫做洛伦兹变换
  • 对任意符号差
    可以定义类似的群

[特殊正交群

]
行列式为
的实正交矩阵。

[特殊酉群

]
行列式为
的酉矩阵。
  • 辛矩阵的行列式总是
    .

2 插曲:球面

[n维单位球面] 轨迹 (locus)

中称为
维单位球面,记为

[球极平面射影]

-球面的北极点是
,将
中的轨迹
视为
-空间
,球面上的点
的像
是过北极
两点的直线
的交点。

北极

被映为无限远点,除了
点,
的所有点处都是双射,公式为:
球极平面射影公式:首先把过
的直线写成参数形式
,当第一个位置的坐标为零,即
时,点
中,将
带入得到其他坐标。
  • 这个投影把下半球面
    双射地映到
    -维单位球,而如果用南极投影,会把上半球面
    双射地映射到单位球。
  • 因此构造
    -球面有两种构造方法:
    -空间
    与单点
    的并;或两个单位球的并,这两个单位球沿着边缘(即
    球面)粘在一起,并适当伸展。

[3-球面上的纬度]

坐标为常数的曲面,称为纬。

  • 时的纬称为赤道,记为

[3-球面上的经度] 取过北极

的大圆,他们是
-球面与包含极点的
维子空间
的交集:
,称
为经,它是
中的单位圆。

如果选取空间

的正交基
,经有参数方程:

  • 上的纬是
    -球面,经是
    -球面。

[引理]

的子空间
的正交基,第一向量是北极
,令
的单位向量的经。
  1. 交赤道
    于两个点,如果
    是其中一个点,则另一个点是
  2. 有参数化。如果
    的一个点,然后用
    代替
    如果必要的话,可把
    表示为
    的形式,
    ,那么对所有的
    ,这种
    的点的表示是唯一的。
  3. 除了两极点,
    的每个点都位于唯一的经上。
证明:(2)计算
所以
是单位向量当且仅当
在单位圆上,即对某个

(3) 令
中的不在竖直轴上的单位向量。那么
是独立的,张成包含
的二维子空间
。所以
仅在一个这样的子空间中,仅在一个经上。

3 特殊酉群

[

的元素]
的元素是形如
矩阵, 其中
证明:令
的元素,其中
。令
, 即
所以
, 于是

[与球面一一对应]

中的3-球面
一一对应。

能够在其上定义连续群法则的球面,只有1-球面和3-球面。
  • 球面的北极
    对应恒等矩阵
    ,其他标准基向量对应定义四元数群的矩阵:

[四元数代数] 具有基

的实向量空间,叫做四元数代数.

[引理] 除了两种特殊矩阵

之外,
的特征值是绝对值为
的复共轭数。
证明:
的特征多项式为
在单位球面上时,
, 所以
. (所有酉矩阵的特征值的绝对值都为
)

[命题]

中的纬是共轭类。对给定的
, 纬
由迹为
的矩阵
组成,
。其余的共轭类是
,是
的中心。

[引理]

的元素,特征值为
。有一个元素
使得
是对角阵
, 对角元为
. 因此所有有相同特征值,或迹相同的
的元素是共轭的。
证明:令
的长为
的特征向量,对应特征值
, 令
。 能发现
的一个特征值为
的特征向量,那么
组成的
的元素,且

[赤道

]
的赤道
是由方程
(或
) 定义的纬。赤道上点有形式:

  • 矩阵
    是斜埃尔米特(skew-Hermitian)的:
    且它的迹为
  • 矩阵
    是斜埃尔米特的当且仅当
    是埃尔米特的。

[空间V] 迹为零的

斜埃尔米特矩阵构成3维实向量空间,记为
  • 它是
    的正交空间,它的基为
    的单位2-球面。

[命题] 对于

的元素
以下条件是等价的:
  1. 在赤道上,即
  2. 的特征值是
证明:因为特征多项式
,可知前两个条件等价。因为
中唯一特征值为
的矩阵,如果
的一个特征值,那么
的一个特征值。所以
当且仅当
有特征值
,也就是

[命题]

的包含
的2维子空间,令
中的单位向量的经。
  1. 与赤道
    交于两点。如果
    是其中一点,那么另一个是
    。且
    的正交基。
  2. 的元素可以写成形式
    上,
    ,且
    可以用
    来选择时,
    的表示是唯一的。
  3. 的每个元素除了
    都位于唯一的经上。元素
    位于每个经上。
  4. 经是
    的共轭子群。
证明:如果用矩阵符号来写,前3个引理就变成了上一节的最后一个引理。现证明(4)令
分别是角
值,令
,那么因为
,所以
所以
在乘法下封闭,在逆下也封闭。现验证
是共轭的,令
是经
上一个命题说明
共轭于
. 那么
所以
共轭于经

4 旋转群

[旋转] 因为

的赤道
是共轭类,所以由
确定的共轭作用(记为
)可以旋转
。因为
是一个2-球面,所以
确定的这个旋转属于3维旋转群
。故可用
描述
  • E的自旋:非平凡旋转的极点是旋转轴与
    的交点,极点在旋转中不动。如果
    上,那么用
    表示
    的自旋:极点为
    ,旋转角度为

[定理]

  1. 规则
    定义了一个满同态
    ,即
    自旋同态。它的核是
    的中心
    .
  2. 如果
    ,
    ,且
    上。那么
    使
    绕极点
    旋转,转过角度为
    。所以
    可表示为

[

的正交表示]
上面定理描述的同态
叫做
正交表示。将
这个
的复矩阵,映射为某个
实矩阵(
的矩阵)。
  • 的每个元素,除
    之外,都可描述一个非平凡旋转和确定的自旋,所以
    常称为
    自旋群

[

的几何性质]
是二对一的。

因为

是满同态且核为
,所以
同构于
的元素是
对极点的偶对(
的对极点是
)。即
中的一对极点
对应一个 旋转
。因此
叫做
双重覆盖

[射影3-空间] 因为

的一个元素对应
的一对极点,所以通过将对极点等同起来,3-球面可以拓扑地得到
。这样(将3-球面中的对极点重合成一个点)得到的空间叫做(实)射影3-空间,记为
.
  • 同胚于射影3-空间
  • 的点与
    的1维子空间一一对应,每个1维子空间交3-球面于一对对极点。

[定理的证明]


5 单参数群

[单参数群] 从实数加群

的可微同态。

[定理]

  1. 是一个任意实数或者复矩阵,令
    表示
    或者
    那么定义为
    的映射
    是一个群同态。
  2. 反之,令映射
    是一个可微的同态映射,令
    表示在原点处的导数
    . 那么对于所有
    ,
的某子群(正交群,酉群,特殊线性群),那么什么样的
使得

[命题]

  1. 如果
    是实斜对称矩阵
    ,那么
    是正交的。如果
    是复斜Hermitian矩阵
    ,那么
    是酉的。
  2. 正交群
    中的单参数群是同态
    , 其中
    是实斜对称矩阵。
  3. 酉群
    中的单参数群是是同态
    ,其中
    是复斜Hermitian矩阵。

[引理] 对任意方阵

,

[命题] 特殊线性群

中的单参数群是同态
,其中
是迹为
的实
矩阵。

6 李代数

[李代数] 矩阵群

在恒等元处的切向量空间叫做
群的李代数,记为
.
例:用复平面上的单位元圆表示圆群(所有模为
的复数组成的乘法群),它的李代数是
的实数倍空间。

[相切]

  • 与路相切:如果
    是一个
    中的一个可微路,那么速度向量
    与这个路在点
    处相切。
  • 与集合相切:向量
    被称为与
    的子集
    在点
    处相切,如果存在一个可微路
    使得
    , 且
    , 其中
    对于足够小的
    有定义,且整体包含在
    中。
中的元素是矩阵,因此
中的
是一个矩阵值函数。它在
处的导数
也是一个矩阵。如果
那么矩阵
就是
的一个元素。

[命题] 正交群

的李代数由斜对称矩阵组成。

[引理]

中的路,
那么

[命题] 特殊线性群的李代数由迹为

的矩阵组成。

[李括号] 李代数有一种加法结构,称为括号的运算:

  • 括号是一种交换子:它为零当且仅当
    可交换。
  • 括号不满足结合律,但是满足雅可比恒等式

[定义] 李代数

是实向量空间,和一个称为括号的合成法则
,记为
,它满足以下公理:
  1. 双线性
  2. 斜对称性
    ,或
  3. 雅可比恒等
李代数是有用的,因为作为向量空间,他们更方便和线性群一起研究。而且很多线性群包括典型群,几乎由他们的李代数所确定。

7 群平移

[平移]

是矩阵群
的元素,左乘
(记为
)是
到自身的双射:
  • 它的逆函数是左乘
  • 映射
    是连续的,因为矩阵乘法连续。
  • 是从
    的同胚,也称为由
    确定的
    左平移

[齐性] 左乘

映射到
,在
点和
点群看上去是一样的,因为
是任意矩阵,所以在任意两点群看上去都是一样的。比如平面在任意处都看上去相同。
  • 圆群
    上的左乘旋转这个圆周;
    上的左乘也是
    -球面的刚性运动。
  • 齐性在其他矩阵群较弱,乘矩阵可能使群变形,但这种形变是连续的。

[流形]

上具有齐性的子集是是流形。
维流形
是一个集合,其中每个点都有一个邻域与
中的一个开集同胚。
  • 典型群都是流形。

[定理] 如果

的子群是闭子集,那么它是流形。

[引理] 矩阵指数

中的元素
的小邻域同胚地映为
中的元素
的邻域

[命题] 正交群

维流形。

[路连通]

的子集是路连通的,如果
的任意两点可以被完全位于
中的连续的路连接。

[命题]

是路连通矩阵群,令
的子群,它包含
的一个非空开子集
,那么

[定理]

  1. 的唯一真正规子群是它的中心
    .
  2. 旋转群
    是单群.

8

的正规子群

[射影群]

是一个域,
的中心是
,商群
叫做射影群,记为
. 它的元素是陪集

[定理1]

是阶至少为
的域。
  1. 的唯一正规子群是它的中心Z={pm I}.
  2. 射影群
    是单群。

[引理1]

是一个素数的幂。
的阶是
。如果
不是
的幂,那么
的阶是
。如果
的幂,那么
,且
的阶为

[引理2] 阶大于

的域
包含一个元素
,其平方不是
证明:平方为
的唯一元素是
,平方为
的元素是
,最多有两个元素的平方是
: 如果
,那么
,所以

[定理1的证明] 给定域

,令
表示
。记
。选择非零元素
,它的平方
不是

是包含元素
的正规子群,要证
是整个

因为

是任意的,所以直接证很难,所以先证
包含一个特征值为
的矩阵。
  • 第一步:
    中存在矩阵
    使得交换子
    中,且它的特征值是
  • 第二步:有特征值
    的矩阵构成
    的一个单个共轭类
    ,且这个共轭类包含
  • 第三步:初等矩阵
    ,在
    中,其中
  • 第四步:矩阵
    ,
    , 形成
    ,因此

[复代数群] 是一般复线性群

的子群,是有限复多项式方程组的复数解的轨迹(locus)。

[定理2]

  1. 的中心是有限循环群。
  2. ,群
    是路-连通复代数群。除了
    ,它们是单群。
  3. 除了这些的同构类,单的路-连通的复代数群恰有
    个同构类,称为
    例外群

下一章:

今天数学学点啥:代数Artin(十): 群表示​zhuanlan.zhihu.com
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值