卡方检验的统计量推导_统计学系列——假设检验之卡方检验

卡方检验是一种统计推断中的假设检验方法,用于判断理论比率pi与观察结果是否一致。通过计算卡方统计量,评估观测数据与理论预期的偏离程度。在大样本情况下,卡方统计量遵循卡方分布,根据检验水平α,可以决定是否拒绝原假设,从而对理论的可靠性进行评估。卡方检验广泛应用于各个领域,如孟德尔遗传理论的验证、产品质量检验等。
摘要由CSDN通过智能技术生成

统计方法在科学上的一项重要应用---用于客观的评价某项理论上的结论是否与观察结果相符,以作为该理论是否站得住脚的印证。这就是统计推断中假设检验的运用。今天我们要来复习的就是假设检验的卡方检验法。

有这么一些理论或问题,可以表成如下一般的模式:

设一总体包含k种可以区别的个体,根据某种理论或是纯粹的设想或假设,第i种个体数的比率应为某个已知的数pi(i=1, …, k),有pi>0,求和pi=1。这一组比率(p1,…, pk)将作为我们的原假设

这样的原假设的例子如:

1)孟德尔的3:1理论:

k=2,p1=3/4, p2=1/4

2)孟德尔的9:3:3:1理论:

k=4,p1=9/16, p2=p3=3/16, p4=1/16

3) 均匀骰子:

k=6,p1=p2=…=p6=1/6

4) 工厂产品质量长期维持的情况为

1等:25%;2等:30%;3等:35%;不合格:10%

k=4,p1=0.25,p2=0.30,p3=0.35,p4=0.10

判断这类原假设是否可信,用到的工具就是卡尔·皮尔逊在1900年发表的一篇文章中引进的卡方检验法。

现在我们从前面提到的总体中随机有放回地抽取n个个体(若抽样不放回,则需要假定总体所含个体数与n的比是很大的),发现其中第i种个体数为Vi(i=1,…, k)。有求和Vi=n。这(V1,…, Vk)就是我们的观察数据(或试

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值