统计方法在科学上的一项重要应用---用于客观的评价某项理论上的结论是否与观察结果相符,以作为该理论是否站得住脚的印证。这就是统计推断中假设检验的运用。今天我们要来复习的就是假设检验的卡方检验法。
有这么一些理论或问题,可以表成如下一般的模式:
设一总体包含k种可以区别的个体,根据某种理论或是纯粹的设想或假设,第i种个体数的比率应为某个已知的数pi(i=1, …, k),有pi>0,求和pi=1。这一组比率(p1,…, pk)将作为我们的原假设。
这样的原假设的例子如:
1)孟德尔的3:1理论:
k=2,p1=3/4, p2=1/4
2)孟德尔的9:3:3:1理论:
k=4,p1=9/16, p2=p3=3/16, p4=1/16
3) 均匀骰子:
k=6,p1=p2=…=p6=1/6
4) 工厂产品质量长期维持的情况为
1等:25%;2等:30%;3等:35%;不合格:10%
k=4,p1=0.25,p2=0.30,p3=0.35,p4=0.10
判断这类原假设是否可信,用到的工具就是卡尔·皮尔逊在1900年发表的一篇文章中引进的卡方检验法。
现在我们从前面提到的总体中随机有放回地抽取n个个体(若抽样不放回,则需要假定总体所含个体数与n的比是很大的),发现其中第i种个体数为Vi(i=1,…, k)。有求和Vi=n。这(V1,…, Vk)就是我们的观察数据(或试