pandas的DataFrame使用apply实现对多列,多行操作

最近在总结模型效果的时候,结果DataFrame中一列是模型效果Result,一列是效果的std。但是展示的时候想写成Result ± std的形式。但是在尝试用apply对多列进行操作的时候总是报错,查了一下,是忘了设置axis=1这个参数。以下是总结&举例。

我们可以用DataFrame的apply函数实现对多列,多行的操作。
需要记住的是,参数axis设为1是对列进行操作,参数axis设为0是对行操作。默认是对行操作。

多列操作举例

现在有如下一个DataFrame

np.random.seed(1)
df = pd.DataFrame(np.random.randn(4,2), columns=['A', 'B'])
df
>>>
       A	B
0	1.624345	-0.611756
1	-0.528172	-1.072969
2	0.865408	-2.301539
3	1.744812	-0.761207

A, B两列操作,生成C列, 其中C是字符串,由A ± B组成。下面看一下结果就明白了。

df['C'] = df.apply(lambda x: '{:.2f}±{:.2f}'.format(x['A'], x['B']), axis=1)

看一下效果

	A	B	C
0	1.624345	-0.611756	1.62±-0.61
1	-0.528172	-1.072969	-0.53±-1.07
2	0.865408	-2.301539	0.87±-2.30
3	1.744812	-0.761207	1.74±-0.76

多行操作举例

同理可以作用在多行上。

df.loc[10] = df.apply(lambda x: '{:.2f}±{:.2f}'.format(x[2], x[3]) )

看一下实现的效果

       A	B
0	1.624345	-0.611756
1	-0.528172	-1.072969
2	0.865408	-2.301539
3	1.744812	-0.761207
10	0.87±1.74	-2.30±-0.76
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值