注意:本篇博客直接使用VOC2007数据集
1.数据集
Labelimg软件构建数据集,Labelimg项目地址:https://github.com/tzutalin/labelImg,Labelimg快捷键:
Ctrl + u Load all of the images from a directory
Ctrl + r Change the default annotation target dir
Ctrl + s Save
Ctrl + d Copy the current label and rect box
Space Flag the current image as verified
w Create a rect box
d Next image
a Previous image
del Delete the selected rect box
Ctrl++ Zoom in
Ctrl-- Zoom out
↑→↓← Keyboard arrows to move selected rect box
voc2007数据集目录结构 :
----voc2007
----Annotations
----ImageSets
----Main
----JPEGImages
在根目录下新建makeTXT.py,将数据集划分,并且在Main文件夹下构建4个TXT:train.txt,test.txt,trainval.txt,val.txt。代码如下:
import os
import random
trainval_percent = 0.1
train_percent = 0.9
xmlfilepath = 'data/Annotations'
txtsavepath = 'data/ImageSets'
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
ftrainval = open('data/ImageSets/trainval.txt', 'w')
ftest = open('data/ImageSets/test.txt', 'w')
ftrain = open('data/ImageSets/train.txt', 'w')
fval = open('data/ImageSets/val.txt', 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftest.write(name)
else:
fval.write(name)
else:
ftrain.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
在 根目录下新建voclabel.py,生成labels。代码如下:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
in_file = open('data/Annotations/%s.xml' % (image_id))
out_file = open('data/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
image_ids = open('data/ImageSets/%s.txt' % (image_set)).read().strip().split()
list_file = open('data/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('data/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()
数据格式如下图:
其中images里面存放的是JPEGImages的全部图片。
2.环境
(1)git clone https://github.com/ultralytics/yolov3.git
(2)pip install -U -r requirements.txt
(5)在项目根目录下新建weights文件夹,下载权重文件,将其放入weights文件夹中。
(6)测试:./darknet detect cfg/yolov3.cfg weights/yolov3.pt data/samples/bus.jpg 或 ./darknet detector test cfg/coco.data cfg/yolov3.cfg yolov3.pt data/samples/
3.训练模型
(1)下载。
(2)在data目录下新建**.name文件,存放你的数据集类别名称。本文用coco.names:
aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor
(3)在data目录下新建**.data文件,本文用coco.data:
classes = 20#类别数
train = data\2007_train.txt#voc_labels.py生成的训练集的位置
valid = data\2007_test.txt
names = data\coco.names
backup = backup\
(4) 更新cfg文件的classes,本文使用的classes=20。yolo上一卷积层的filters=3*(classes+5),其中5代表的是4个坐标+1个置信度。
(5)开始训练:python train.py --data data/coco.data --cfg cfg/yolov3.cfg --weights weights/yolov3.pt
中断后,恢复训练:python train.py --data data/coco.data --cfg cfg/yolov3.cfg --weights weights/yolov3.pt --resume
注意:max_batches = 50200 ### 迭代次数
(6)测试:
python detect.py --cfg cfg/yolov3.cfg --weights/******.pt --source data/samples/file.jpg
Image:
--source file.jpg
Video:
--source file.mp4
(7)评估模型:
python test.py --data data/coco.data --cfg cfg/yolov3.cfg --weights weights/******.pt
(8)可视化:
Python -c from utils import utils; utils.plot_results()