变量求和_MP122:从线性代数看分析学(1):差分与求和

本文探讨了在离散时间序列中,如何利用线性代数来定义和理解差分算子与求和算子。通过差分算子,我们可以对函数进行离散形式的微分,而求和算子则提供了差分的逆运算,类似于积分。在有限维线性空间中,这两个算子是线性映射,并可在矩阵表示下进行运算。此外,文章还讨论了这些概念如何推广到仿射空间,并在无穷维线性空间中与微积分的连续形式相对应,为泛函分析奠定了基础。
摘要由CSDN通过智能技术生成

a30d3b640d1bad7336a9236bfaee2ec1.png

函数

对变量均匀等分离散化后,构成时间序列,取其中的一段由
个点构成向量,用列向量记为
。现在用线性代数来讨论离散形式的微积分。

差分算子

将线性空间

上的线性自同态集合记为

易于证明如下定义的差分算子(difference operator)是其中的一个自态射:

上式可以展开为矩阵乘法:

即作为有限维的线性映射,差分算子具有如下的矩阵表示:

二阶差分

线性自同态

的复合仍然是线性自同态,直接计算二阶差分算子有:

相当于对差分再做一次差分:

类似的可以得到高阶差分的矩阵表示。

等价划分

不仅可以在线性空间

上定义差分算子,还可以将其拓展到仿射空间上,若
是仿射空间
的平移空间,则可以类似以上定义差分算子
。显然,仿射空间
上叠加一个常数
不会影响差分的结果,即
,这一关系是一种等价关系,记为

这里用上划线

表示以
为代表的等价类。

差分构造了集合的划分,这一等价的关系是分析学的一个基础概念。注意到差分算子

不是
单同态(monomorphism),其矩阵表示(3)是不可逆的。对于并非是单同态的映射,通常可以用等价划分的方式来研究。在
中以相同的差分作为等价关系:

这样构成了对

的一个
划分(partition)
,令

易于验证

。即向量的每个元素之间若相差一个固定的常数,则两个向量具有相同的差分,在微积分中,这一现象就是体现为不定积分中原函数的常数符号。

通过差分算子

诱导出的等价划分(4),得到一个
满射(surjective map)

称为正则投影(canonical projection)

求和算子

下式给出了差分算子的逆运算

这就是求和算子,即积分算子的有限维原形。去掉常数项后,求和算子具有矩阵表示,它也是线性算子,记

对比(5)中的正则投影可见,求和算子相当于正则投影的逆运算。在连续函数的微积分中,这一关系即是求导和求不定积分的关系。

讨论

以上讨论了

个点离散化后构成的有限时间序列,将其纳入
维线性空间
中,用纯线性代数的方式讨论了差分算子
和求和算子
,且
。不严格地说,当
且将物体延拓到整个
之后,我们实现了对函数
的某种逼近,问题必须置于一个无穷维的线性空间
中讨论。此时差分算子和求和算子,在无穷维护的线性空间中构成了求导算子和积分算子,它们都是
中的线性算子,对它们的研究构成了泛函分析的一个主题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值