空间装扮代码_尬哭你的QQ空间非主流黑历史,你真舍得删吗?

929228b9ef327cd129f96da5d50179d0.png

春希 | 文

在青涩懵懂的年纪,这届年轻人大概都曾幻想过在QQ空间成为一名多愁善感、累觉不爱的文艺青年。

2ab133ebe1c82cb832f0375ccf67552b.png

左手拿烟把Ta的名字吸进肺里,要爱的天昏地暗,转眼间又45度仰望忧伤,眼角带泪感叹“我的心已经累了,不会再爱了”。

b4a260540a6ad2cd4cb2250cb39a7549.png

尽管在那段少不更事的年龄里,少年们的“失恋”与“心累”十有八九是假的,伤感文字多半是复制的。

但这并不妨碍我们的蜜汁自信,在空间动态留下一段段不堪回首的羞耻点滴。

7e6ec55c7a08070efe1ca8122d93e9c7.png

非主流的空间装扮,矫情做作的照片与说说,这些QQ空间里富有年代感的不忍直视的记录,时刻提醒着你当年放飞自我的黑历史。

4537c46b1d9807e73a6de11594f8687d.png

于是,想要一键清空这些黑历史的人,不在少数。

前段时间,腾讯QQ在微博上透露,当初大伙写说说的劲头有多欢,现在渴望删除的心就有多狠。为了快速清理自己曾经的非主流痕迹,不少人希望腾讯能推出批量删除说说功能。

28419d8072a6ef40674672d613f0a747.png

这对腾讯当然不算一个好消息。

或许当初腾讯自己也没有想到,QQ空间会走上一条这样的发展轨迹。

dcadef6dcab1c0b12b58f5e576a67fc6.png

2005年,QQ空间以国内最早的微部落格之一的姿态上线,后来完美贯彻了量大管饱、多就是好的宗旨,什么功能都往里塞。

9e28f21e7385fe40dbde8ea180069480.png

现在的QQ空间,又多了不少H5小游戏入口

比起现在“老年人”专用的商务味更浓的微信,彼时QQ空间更像一处私人的后花园。

玩装扮、发照片、写说说、写日志、玩小游戏,功能一应俱全,没有哪个刚接触互联网的骚年能拒绝这等诱惑,于是纷纷入坑。

1489f8332c079cf0a0bc27898d5ec143.png

风靡一时的《抢车位》

打理空间的第一步是取个网名,这是那会QQ空间的门面。

一句夹杂着火星文与奇怪符号的“ωǒ ゛微笑↘”、“≮暖忄意中亽≯”,在那时不叫中二,叫奢华内涵国际范,把你打成“妳”,说“峩”不说我,更是骚年们叛逆精神的象征。

2e65577bf31f96a1d49607ddefc822c9.png

发说说,“嗯哼”、“虾米”、“886”,是比“呐”、“米娜桑”更早一辈的经典潮流语录,用上了就仿佛与世界互联网大潮成功接轨。

97ea374fecb5fe494286f143183b3e70.png

这还不是最经典(尬)的,更尬一筹的统统藏在日志里。

一点开日志,少年们一扫作文课上半天憋不出来俩字的难熬状态,变得文思泉涌。

84cb6b01624920601b78d52dc5d3589e.png

男孩们幻想在网文和动漫的世界里只手遮天,女孩则游走在东京、巴黎和苏黎世的街头上演玛丽苏的戏码。

f600e9dade7c7976e030e4ede1ce4bcc.png

感受一下~

细品一下这些日志,比如那时的代表作《是谁导演了这场玫瑰花的葬礼》,不难发现故事里“自残”、“渣男”、“结尾转折”的情节设计,放现在恰好是一出绝佳的土味视频剧本。

31f28fe531474884a1c1740b10978255.png

虽然尬,但也能让人哭笑不得地品出一番土到极致就是潮的欢乐。

看完伤感文学创作再翻开相册,未经美颜的乡村风大头贴,加上当时翻盖手机拍出的感人像素,扑面而来的土气能叫人冷汗直竖。

2c963f00e11fce18a564ee86e5db8957.png

嘟嘟嘴、剪刀手,和边角落里“爱情是糖,甜到忧伤”的配字,更是绝杀了你内心的最后一丝安定,恨不得能一键将这些照片尽数删除。

d2510b2787520b7fb03492a355194d37.png

尽管这些照片里你的身材和发量,可能也一去不复返了

不仅如此,真正的QQ空间热爱者还要学会包装。一个月花上10块,开通黄钻,就能使用限定装扮,让零花钱捉襟见肘的同学第一次认识到社会的险恶,原来有些差距真的只有氪金才能弥补。

3dbd8ea7dde0a1428d6baab977e00cf7.png

为了装扮空间,许多少年开始钻研百度引擎,从网上学会了复制QQ空间模板代码、下载克隆插件。但你或许有所不知的是,这些插件可能暗藏木马,后来你QQ被盗,或是账号无故向他人散发广告,可能就拜这些插件所赐。

66d494cb35e6c5ee35a68c5ae4d66726.png
64ddd84cfd8fc8bf4520639502be7378.png

QQ空间模板

而懂得如何在不开通特权的情况下在空间首页插入音乐,则会让你成为同学乃至亲友间的“电脑专家”。

不过当年在QQ空间异常活跃的本兮、徐良那些叛逆伤感的歌,现在听来已经不怎么能触动你了,还被藏到了歌单的底部。

304be128077c6783b0ae36b53331c6cd.png

那年的三巨头

然而,无论你空间布置的有多精美,吸引眼球的功力还是比不上当年那些已经总结出方法论的初代引流党。

这或许是无节操的营销号的起源,在他们笔下,张杰被韩国人气哭了,莱昂纳多不小心说漏了QQ,再加上“是中国人就转!”、“晚了就加不上了!”的煽动性话语,怀着一颗赤诚之心的你有中过招吗?

af1be61cdd015dafa2996adc3f47bed0.png

除却这些内容,QQ空间还记录了那会少年们社交与情感的变迁。

“谁看过我”、“我看过谁”、“被挡访客”,三项数据的变化牢牢印证了使用者与Ta的起承转合。

b34ddb904223379bea38bc45f8948f71.png

而为了查看“被挡访客”选择支付的10元黄钻费用,放在当时无疑是一场大额度的豪赌。

39c99fdb43da0d6f471431873806968f.png

新老互联网文化结合~

但今时不同往日,现在你看到QQ弹出提示“空间访客+1”,涌上心头的已经不是喜悦,而是一股浑身发毛的惊恐,内心在呐喊:“完了,忘记锁空间了,黑历史全被看光了,这不是真正的我啊!”

d944432e5d7bdb9c31f44e94aec0ae4f.png

当你问起好友还有没有玩QQ空间,对方回答在玩,你试图进入却被挡在了空间门外,这时你才意识到,身边的社交关系已经换了好几轮,过去的社交链已经完全割裂了。

929228b9ef327cd129f96da5d50179d0.png

有位同事直接注销了QQ空间

直观上看,如今QQ空间的用户体验比过去差了很多,信息流被换皮手游、H5小游戏的广告污染,营销号多了起来。

8360c6334ab4b9ea90e2d7e57c29d05d.png

时不时弹出的“官方黄钻”提醒也让强迫症用户难以招架。

0f976e9fef384dacdf288b314e21f918.png

三天两头的“时光机”带你回顾“历史上的说说”,则尬出了我们一身鸡皮疙瘩。

用户数上,QQ和QQ空间也在与微信的竞争中逐渐落於下风,用户数逐年走低。

然而QQ空间不是没有试着重新证明自己仍身处潮流前线,2018年,QQ空间曾联手陈冠希推出联名款潮牌服饰。

84e4daa6c900a01087bb6ce91745971b.png

但几个月后发生的陈冠希与狗粉丝的“线下PK事件”(点击了解详情),反倒让这次QQ空间对潮流的追逐多少显得背道而驰。

5e14e5a39a578cdc62bdd7715370c3c1.png

那么,回到一个关键的问题,看着这些QQ空间里不堪回首的黑历史,你会选择将其删除吗?

许多人的回答出乎意料。在上文提到的腾讯QQ的那条微博下,多数人的想法其实是:“我想恢复以前的说说。”

240e905eba28bd177a84602989c97aea.png

这当然不是没有道理的。

当年在QQ空间发的动态之所以尬,是因为那时我们过着一种无忧无虑的生活,写下的是天真无邪的碎碎念,没有树立人设的追求。

比起在朋友圈里“晒吃”、“炫富”,活在QQ空间的我们更加娱乐至死。也正因此,我们才会在QQ空间留下各种无所顾虑的尬语,为赋新词强说愁。

更何况,那里也保留着我们有关游戏的记忆。

f9d407b2e3674271a155586bdb676ca7.png

-END-

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值