levy过程和布朗运动的关系_测度论观点下的初等概率论与随机过程

本文探讨了从测度论角度理解初等概率论及马氏链的概念,包括随机变量、概率测度、可测映射等,并讨论了离散时间有限状态马氏链的测度论观点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7462815be046b56000b6d7962b9569e2.png

本篇标题是向F·克莱因的《高观点下的初等数学》致敬,就是题图那本书。F·克莱因是德国大数学家,提出过埃尔兰根纲领,还有克莱因瓶。Mathematics Genealogy Project主页上那张学术家谱树上就有他。他的两个导师可以分别追溯到高斯和欧拉,希尔伯特是他的徒孙,往下数七代可以找到随机过程随机过的cdy老师。整个网站大概记录了二十万人,其中有四分之一都是他的学术后代。

扯淡结束。初等概率论里,我们学了随机变量。对于离散型随机变量,就是一个有限或者无限的数列(元素互不相等),每个元素有一个0到1之间的概率,整体的概率和为1. 对于连续型随机变量,有一个概率分布函数(cumulative distribution function, CDF)

,其导数是概率密度函数(probability density function, PDF)
, 满足
.

从测度论的角度来讲,一个随机变量

,就是测度空间(measure space)
到作为可测空间(measurable space)的实数集(装备Borel集作为可测结构)
的可测映射(measurable mapping)。

这一可测映射诱导了实数集上的概率测度

,对于任意Borel集
,有
.

之后,我们在考虑这个随机变量的时候,就可以只考虑其在

上诱导的概率测度,而不必考虑原先的三元集
了。或者说,我们利用映射
这一『同构』,以
代替了

这就是所谓看山三境界:一开始看山是山,只能看到随机变量是个随机的实数。然后看山不是山,能看到随机变量背后是个测度空间,随机变量本身是个可测映射。最后看山还是山,能看到随机变量本质上是

上的一个概率测度,又回到了实数集。

当然,对于离散型随机变量,上面的鬼画符没什么意义。引入测度论主要是为了处理不可数集。


下面考虑离散时间有限状态马氏链,状态集是

在初等随机过程里,马氏链无非是有个状态空间,每一步的转移概率由当前概率唯一决定,所以转移概率可以写成一个

的转移概率矩阵
. 运行起来,就是看当前状态是什么,然后按转移概率矩阵对应的那一行决定下一步去哪。

对于随机变量,我们观测到的是一个实数。对于马氏链,我们观测到的是一条轨道

. 所以整个观测空间是
. 注意这是个不可数集合。上面的可测结构
由有限柱集(形如
)张成。

于是马氏链又变成了一个可测映射

,同时在右边诱导了一个概率分布
,对于一个有限柱集,其概率由转移概率矩阵决定。当然了,这次这个映射没什么卵用,因为实际上,我们对左边没什么认识,还是直接看右边的概率分布比较实在。

右边

,第一项是轨道空间,第二项是有限柱集生成的
域。因为我们能在有限柱集上定义概率(依靠转移概率矩阵),利用Kolmogorov扩张定理,可以定义出一致的概率分布。实践中,测度论观点下的马氏链就是这个三元集,即轨道空间及其概率测度结构。

我们上面实际证明了存在一个随机过程(轨道空间三元集),其有限柱集的概率与转移概率矩阵定义的概率相一致。所以马氏链存在。在严格的随机过程理论里,满足某些条件的随机过程的存在性是需要证明的。随机过程因为轨道空间不可数,自然要用到测度论。

对于连续时间的随机过程,存在性相对比较难证,因为此时轨道空间是

, 如何定义可测结构,以及如何将概率扩展到整个空间上,都比较麻烦。尤其布朗运动还是连续状态,存在性可是要证一阵子。

我上大学的时候,大二下先学了半学期初等概率论,然后开始看Durrett,懂了些粗浅的测度论和高等概率论。之后的暑假看了Halmos的测度论,大三开学之后学的实变函数论和初等随机过程。学的时候真是极其酸爽,领悟到上面这些道理的时候,也非常开心。不过这都是后来被纯概率虐哭之前的事了。

最后说个小笑话。之前我老板向一个教授介绍我的时候,说I have a quite capable student... 这当然是句很好的话。不过也许你可能更熟悉incapable,作为残疾的一种比较委婉的说法。所以如果从incapable的反义词来翻译上面那句话,那就是『我有个学生,嗯,怎么说呢,好歹不是个残废啊!』这意思一下就233333了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值