
本篇标题是向F·克莱因的《高观点下的初等数学》致敬,就是题图那本书。F·克莱因是德国大数学家,提出过埃尔兰根纲领,还有克莱因瓶。Mathematics Genealogy Project主页上那张学术家谱树上就有他。他的两个导师可以分别追溯到高斯和欧拉,希尔伯特是他的徒孙,往下数七代可以找到随机过程随机过的cdy老师。整个网站大概记录了二十万人,其中有四分之一都是他的学术后代。
扯淡结束。初等概率论里,我们学了随机变量。对于离散型随机变量,就是一个有限或者无限的数列(元素互不相等),每个元素有一个0到1之间的概率,整体的概率和为1. 对于连续型随机变量,有一个概率分布函数(cumulative distribution function, CDF)
从测度论的角度来讲,一个随机变量
这一可测映射诱导了实数集上的概率测度
之后,我们在考虑这个随机变量的时候,就可以只考虑其在
这就是所谓看山三境界:一开始看山是山,只能看到随机变量是个随机的实数。然后看山不是山,能看到随机变量背后是个测度空间,随机变量本身是个可测映射。最后看山还是山,能看到随机变量本质上是
当然,对于离散型随机变量,上面的鬼画符没什么意义。引入测度论主要是为了处理不可数集。
下面考虑离散时间有限状态马氏链,状态集是
在初等随机过程里,马氏链无非是有个状态空间,每一步的转移概率由当前概率唯一决定,所以转移概率可以写成一个
对于随机变量,我们观测到的是一个实数。对于马氏链,我们观测到的是一条轨道
于是马氏链又变成了一个可测映射
右边
我们上面实际证明了存在一个随机过程(轨道空间三元集),其有限柱集的概率与转移概率矩阵定义的概率相一致。所以马氏链存在。在严格的随机过程理论里,满足某些条件的随机过程的存在性是需要证明的。随机过程因为轨道空间不可数,自然要用到测度论。
对于连续时间的随机过程,存在性相对比较难证,因为此时轨道空间是
我上大学的时候,大二下先学了半学期初等概率论,然后开始看Durrett,懂了些粗浅的测度论和高等概率论。之后的暑假看了Halmos的测度论,大三开学之后学的实变函数论和初等随机过程。学的时候真是极其酸爽,领悟到上面这些道理的时候,也非常开心。不过这都是后来被纯概率虐哭之前的事了。
最后说个小笑话。之前我老板向一个教授介绍我的时候,说I have a quite capable student... 这当然是句很好的话。不过也许你可能更熟悉incapable,作为残疾的一种比较委婉的说法。所以如果从incapable的反义词来翻译上面那句话,那就是『我有个学生,嗯,怎么说呢,好歹不是个残废啊!』这意思一下就233333了。