三个不等_高中数学竞赛——一道不等式题目的多种证法及讨论

一道不等式题目的多种证法及讨论

我们先来看这样一道不等式问题:

实数

满足
. 求证:

均值不等式

注意到当

时,不等式能够取到等号. 已知条件给出了一次对称多项式
的值,所以我们可以根据等号成立条件、利用均值不等式进行如下的配凑:

三式相加,得证.

切线法

这道题目其实也可以用切线法来做(即使没第一眼就看出来,看过上面的解法也很容易就想得到了).

,则

所以,有

,进而可知
的图像在
处的切线方程为

我们尝试证明:

这等价于

上式显然成立.

于是,有

琴生不等式

谈到了切线法,就不得不把“琴生不等式”也搬出来了.

我们还是设

,则

所以

在定义域内下凸,由琴生不等式,可得

更过内容请见微信公众号:数学竞赛的内功心法
部分视频讲解可关注bilibili:清华学长QuDer

进入正题

以上三种方法各有千秋.

一、利用均值不等式做法简洁且更具观赏性,而且即使把问题修改为证明

也可以采用同样的方法.

二、切线法是一种构造局部不等式来完成证明的方法,可以总结为:

对于
为给定区间,
为常数,求证
这样的不等式,若
可导,当观察得取等条件为
,可以找出
处的切线函数
,可尝试证明
若此不等式在区间
内恒成立,则原不等式成立.

值得注意的是,上面提到的

不一定恒成立!有时我们可以通过分类讨论来解决问题(例如:设

,求证:

这道题目就可以用切线法结合分类讨论来证明,证明放在本篇文章最后),有时我们也需要转变思路,更换其他的方法,切线法是一种试探性的尝试,并非万能.

三、用琴生不等式来做这道题,明显有些小题大做了. 也有人认为能用切线法解决的问题肯定都是“上凸”或者“下凸”的,所以都可以用琴生不等式直接证明,但事实并不是这样的!我们看下面这个简单的例子:

. 求证:

证明 利用恒等式

我们只需证明

处的切线为
,我们可尝试证明
而由均值不等式,我们有

式成立.

这里,

既非上凸也非下凸,但是图象恒在直线
的上方,所以可以用切线法,但不能直接用琴生不等式.

53cb5da1cbbe601a4f71226aeb9e01ff.png

切线法与分类讨论

,求证:

证明 观察一下要证的不等式,对称还齐次. 那我们就直接给他来个全套:不妨设

. 将三个括号平方后化简,记
,则原不等式等价于

求导,可得
. 现在尝试证明:

对上式进行整理,其等价于

至此,我们需要增加条件:

.

由于

,我们需要分如下两种情况讨论:
  • ,当然就证完了;
  • 中有大于
    的,则一定是
    ,由于
    ,可得
    ,所以
    ,故

综合以上两种情况,原不等式成立.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值