一道不等式题目的多种证法及讨论
我们先来看这样一道不等式问题:
实数
均值不等式
注意到当
三式相加,得证.
切线法
这道题目其实也可以用切线法来做(即使没第一眼就看出来,看过上面的解法也很容易就想得到了).
设
所以,有
我们尝试证明:
这等价于
上式显然成立.
于是,有
琴生不等式
谈到了切线法,就不得不把“琴生不等式”也搬出来了.
我们还是设
所以
更过内容请见微信公众号:数学竞赛的内功心法
部分视频讲解可关注bilibili:清华学长QuDer
进入正题
以上三种方法各有千秋.
一、利用均值不等式做法简洁且更具观赏性,而且即使把问题修改为证明
也可以采用同样的方法.
二、切线法是一种构造局部不等式来完成证明的方法,可以总结为:
对于,
,
为给定区间,
为常数,求证
这样的不等式,若
可导,当观察得取等条件为
,可以找出
在
处的切线函数
,可尝试证明
若此不等式在区间
内恒成立,则原不等式成立.
值得注意的是,上面提到的
不一定恒成立!有时我们可以通过分类讨论来解决问题(例如:设
这道题目就可以用切线法结合分类讨论来证明,证明放在本篇文章最后),有时我们也需要转变思路,更换其他的方法,切线法是一种试探性的尝试,并非万能.
三、用琴生不等式来做这道题,明显有些小题大做了. 也有人认为能用切线法解决的问题肯定都是“上凸”或者“下凸”的,所以都可以用琴生不等式直接证明,但事实并不是这样的!我们看下面这个简单的例子:
证明 利用恒等式
我们只需证明
故
这里,

切线法与分类讨论
设
证明 观察一下要证的不等式,对称还齐次. 那我们就直接给他来个全套:不妨设
对
对上式进行整理,其等价于
至此,我们需要增加条件:
由于
- 若
,当然就证完了;
- 若
中有大于
的,则一定是
,由于
,可得
,所以
,故
综合以上两种情况,原不等式成立.