琴生不等式一般形式_[学习笔记]常用不等式

1. 命题


左边等号成立当且仅当
,右边等号成立当且仅当
.

2. 命题


等号成立当且仅当
.

3.命题


两边等号成立均当且仅当
.

4.命题


两边等号成立均当且仅当
.

推论

5. 命题

6.

不等式

7.均值不等式


有 均方根QM
算术平均AM
几何平均GM
调和平均HM,即:

当且仅当
时,取等号.

推论


由算术平均
调和平均,化简即可得.

注:均值不等式“均方根QM
算术平均AM”可以由柯西不等式推出. 还可以这样:

取算术平均

有:

所以:

即 :

8.三角(Triangular)不等式

一般形式:

维向量
,利用两边之和大于第三边:

当且仅当
时,等号成立.

即:

特别地,当维数为

时,

有:


左边等号成立当且仅当
,右边等号成立当且仅当
.


左边等号成立当且仅当
,右边等号成立当且仅当
.

9.柯西-施瓦茨(Cauchy-Schwarz)不等式


等号成立当且仅当
为常数或
.

注:

上式即:在
维欧式空间
中,向量
,有:

连续函数上的柯西-施瓦茨不等式

上可积,则有:

等号成立的必要条件是存在常数
使得
.

多元函数上的柯西-施瓦茨不等式

设二元函数
在平面区域
上可积,则有:

10. 琴生(Jensen)不等式


如果函数

在区间
上是向下凸的(二次导数大于
),且
,就有:

对于严格凸函数,等式成立当且仅当
.

更一般地,加权的琴生不等式,如果
,且
,就有:

连续函数上的琴生不等式
函数
上连续,且
,又
上的连续的凸函数,则有:

11.切比雪夫(Chebysev)不等式


又叫马尔可夫不等式,通俗说法:顺序和

均值和
逆序和。

而排序不等式:顺序和
乱序和
逆序和。所以两者基本表达差不多意思。

对于
有:

证明方法:先证顺序和大于一个乱序的乱序和,再由数学归纳法,得出结论.
连续函数上的切比雪夫不等式
若函数

上的连续函数,且
上单调性一致,则有:

12. 幂平均(Power-mean)不等式


对于实数

和正实数
,有

当且仅当
时取等号

证明:记

加权幂平均不等式:
对于实数
和正实数
,有

注:幂平均不等式是多变量的广义形式的均值不等式.

则,均值不等式为:

如何理解几何平均
?

不妨令

后者这个
极限为
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值