为什么方差公式要用平方而不用绝对值_【视觉知识】机器视觉绕不过的协方差矩阵...

文章探讨了统计学基本概念,如均值、方差和标准差,并解释了方差用平方而非绝对值的原因。接着,介绍了协方差作为衡量多维数据中变量间关系的统计量,及其在描述数据集分布和贫富差距中的应用。协方差矩阵对于处理高维数据集和分析变量间的相关性至关重要,尤其在机器视觉等领域。
摘要由CSDN通过智能技术生成
19ebbcebec41cbba024dc4562d6c8777.png

作者:n次方
链接:https://zhuanlan.zhihu.com/p/86624275
来源:知乎

统计学的基本概念

学过概率统计的都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。

均值:

562f75ad943a5463ed4c60674b5259d3.png

标准差:

96edcc405772cf33300384b82861110b.png

方差:

cf45778dc128e1615dddcfeb71446340.png

很显然,均值描述的是样本集合的中间点,它告诉我们的信息是很有限的,而标准差给我们描述的则是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0,8,12,20]和[8,9,11,12],两个集合的均值都是10,但显然两个集合差别是很大的,计算两者的标准差,前者是8.3,后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。

之所以除以n-1而不是除以n,是因为这样能使我们以较小的样本集更好的逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。

这就好比,每年网上都会报XXX年人均收入,这个反映的是均值,我们每个人的收入就是一个样本,一看收入的第一反应,就是作差,又又拖后腿了,差值有正有负,平方求和/(n-1)),这反应的就是贫富差距,方差越大,社会财富分散度越集中,贫富差距越大。

为什么需要协方差?

上面几个统计量看似已经描述的差不多了,但我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子欢迎程度是否存在一些联系啊,嘿嘿~协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

方差的定义

439fba1e9be460af3314474df1b93377.png

来度量各个维度偏离其均值的程度,标准差可以这么来定义:

785d58b9a7731902852760ee1b39286a.png

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐就越受女孩子欢迎,嘿嘿,那必须的~结果为负值就说明负相关的,越猥琐女孩子越讨厌,可能吗?如果为0,也是就是统计上说的“相互独立”。

其实从协方差的定义上我们也可以看出一些显而易见的性质,如:

54fb2e3e474a957592961c08ab9aa184.png

协方差矩阵

协方差多了就是协方差矩阵,上一节提到的猥琐和受欢迎的问题是典型二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算

58be1ee2944be4f4a6918dcaa0ebcb19.png

个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。

于是就有了协方差矩阵: 其中

e40ecc02e89e48c83addb4e0ce16a9ba.png

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为

7ac0fc7f4c2359ed7eabe91e3b75e18c.png

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。

协方差矩阵通常这样计算,先让样本矩阵中心化,即每一维度减去该维度的均值,使每一维度上的均值为0,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可。其实这种方法也是由前面的公式通道而来,只不过理解起来不是很直观,但在抽象的公式推导时还是很常用的!

声明:部分图片及内容来源于网络。仅供读者学习交流之目的,如有不妥,请联系删除。

526fa14bf8bce763da64841bc87dac7f.png

我知道你在看

551e018983455096f8002228bb728b91.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>