干货|脑电实验设计(总结篇)

本文详述了脑电实验设计的关键环节,包括脑电波基础、实验设计的重要性、伦理问题与指南、样本量计算以及实验设计示例。讨论了不同脑电波段与大脑功能的关系,强调了实验设计中的伦理考量、样本量计算方法和刺激呈现软件的使用。此外,还提供了脑电设备的选择和被试准备的建议,为脑电研究新手提供了宝贵的指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
Hello,大家好!
这里是壹脑云科研圈,我是喵君姐姐~

今天给大家带来的是一篇有关脑电实验设计的干货,快来一起看看吧~

01
简介

脑电图(EEG)因其低成本、无创、便携以及毫秒级的高时间分辨率等特点,成为了研究大脑功能、异常和神经生理动力学的可靠且广泛使用的测量工具。

在神经信号处理领域,EEG通常作为一种非侵入性的脑成像技术用于诊断脑部疾病,而正常EEG则用于研究脑功能。它使研究人员和临床医生能够研究大脑功能,如记忆、视觉、智力、运动想象、情绪、感知和识别,以及检测癫痫、卒中、痴呆、睡眠障碍、抑郁症和创伤等异常。

EEG信号反映了大脑的神经元电活动,其中包含了有关大脑状态的有用信息。本文将总结脑电基本原理、脑电实验、伦理准则、样本量计算、实验设计、脑电设备、刺激呈现软件以及实验准备等脑电实验设计环节。

02
脑电波基础

自EEG问世以来,对不同脑振荡及其与不同脑功能关系的研究就一直受到研究人员的关注。Hans Berger发现脑电图中存在α波和β波。大脑振荡按频段分类,并与不同的大脑状态或功能相关联。本文接下来将对EEG频段进行简要说明。脑电波的典型例子如图1所示。

在这里插入图片描述

图1.脑电信号及相应频段。

①δ(高达4Hz)

脑电δ波是一种高振幅的脑电波,与深度睡眠阶段有关。δ波还与深度睡眠以外的不同大脑功能有关,例如,清醒被试的高额叶δ波与皮层可塑性相关。

在认知过程中,尤其是与事件相关的研究中,δ波是一种重要的脑电波。EEG低频分量,尤其是δ频段,是事件相关电位(ERP)P300峰值的主要贡献者。P300是一个被广泛研究和熟知的认知加工指标。

②θ波(4-8Hz)

在昏昏欲睡状态下可以观察到θ波,在儿童中比在成人中更为常见。在清醒的成年人中,在没有进行任何注意/认知活动的情况下,高θ波活动被认为是异常的,并且与不同的脑部疾病有关,例如,高额叶θ波与抑郁症患者抗抑郁治疗无反应有关。

然而,高θ波活动在注意加工和工作记忆中起着重要作用。在成人抑郁症和儿童阅读障碍等脑部疾病研究中也报告了θ波活动的变化。

Pizzagalli等人的研究发现,对重度抑郁症(MDD)治疗反应较好的人在喙内侧扣带回(BA 24/32)中表现出高θ活动。而Klimesch等人的研究报告了阅读障碍儿童的θ波活动减少。

③α波(8-13Hz)

在正常成年人清醒和放松状态下,特别是没有心理活动时,可以自发地观察到α波。在闭眼状态下,α波在顶叶位置很明显。注意加工或认知任务会减弱α波。

α波又分为低频α波和高频α波。在工作记忆的保持过程中,已经观察到α波活动会随着记忆负荷的变化而变化。此外,个体α峰频率是一般智力因素(也称为g因素)的一个指标。

④β波(13-25Hz)

β波的振幅低于α波、δ波和θ波。传统上,β波分为低频β和高频β。在活跃、焦虑思维、解决问题和深度专注时,可以在大脑的额叶和中央区域观察到增强的β波。

Gola等人报告称,在执行空间辨别任务和视觉注意力的高表现参与者中,无论是年轻人还是老年人,枕部的β波能量都有所增加。Engel和Fries对β波活动进行了详细的综述,并给出了β频段活动参与认知加工和运动系统的证据。

⑤γ波(25Hz以上)

γ波是一种快速振荡,通常在有意识的感知过程中发现。与其他慢速脑电波相比,γ波由于其振幅小且受肌肉伪影污染严重而被低估,因而未得到广泛研究。

时间位置的高γ活动与记忆过程有关。有研究报告表明,γ活动与注意力、工作记忆和长期记忆过程有关。γ活动也与精神疾病有关,如精神分裂症、幻觉、阿尔茨海默症和癫痫。

03
实验设计的重要性

每项科学研究都以一个问题开始,以一个可能的解决方案结束。在实验研究中,特别是在大脑研究中,这个问题可能像“哪些脑区与抑郁和压力状态有关?”或“α波在压力和焦虑中扮演什么角色?”一般。

实验问题促使研究人员做出一个研究假设,即关于给定操作如何改变某些测量的描述。研究假设可以是一般的,也可以是具体的。

EEG研究中的一个假设示例可以是这样的陈述“抑郁症患者额叶皮层的脑电图α活动将减少”。在假设陈述中,研究人员可以进一步将假设具体化,例如“与左额叶相比,右额叶区域的EEG额叶α激活将更高。

假设的科学特征是它应该通过实验来检验。高度具体的假设很容易被证伪,而且信息量更大。

在EEG研究中,需要大量的资源,包括设备成本、时间和人力资源(包括实验者、被试和研究助理)等方面。EEG设置过程通常需要一定的时间;数据收集过程根据试次数量或条件的不同而有很大差异。被试数量取决于要检验的效应大小和每名被试需要收集的试次数量。

此外,原始EEG数据需要研究人员清除信号中存在的伪迹。因此,一个不完善的EEG实验设计会给研究人员带来很大的麻烦,因为它要么无法回答既定的假设,要么提供难以解释以得出结论的结果。因此会浪费大量的人力和物力资源。

研究人员需要制定良好的计划,从被试招募到最终结果的解释,需要考虑到实验中的每个步骤,包括所有可能的风险、限制、混淆变量和资源。

04

脑电实验:伦理问题和指南

动物和人类实验在科学和医学文献中有着悠久的历史。在实验过程中使用人类被试对于科学进步和促进医疗福祉至关重要。然而,研究风险始终存在且不可避免。

因此,在实验中使用人类被试,特别是在医疗保健领域,会引起伦理、法律、政治和人文方面的问题。尽管在文献中,无创头皮EEG记录中没有报告严重的健康相关问题,但在人类被试EEG实验中仍有许多问题需要考虑。

①伦理问题

最重要的问题是被试的知情同意,即被试是否有能力决定其参与。当儿童、患者或残疾被试参与研究时,这种情况需要尤其注意。

知情同意书应包括哪些内

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹脑云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值