干货 | 实用指南之fMRI表征相似性分析

在这里插入图片描述

Hello,大家好!
这里是壹脑云科研圈,我是喵君姐姐~

今天要给大家分享的是实用指南之fMRI表征相似性分析的相关内容,快来一起看看哦~

01
简介

研究视角
在过去的50年里,我们在理解记忆的神经生物学方面取得了巨大的进步。在动物模型上的研究揭示了海马体中与学习和行为相关的单细胞神经编码之间的详细关系。
神经成像,尤其是功能性磁共振成像(fMRI)——使研究人员能够将大脑活动的整体模式与支持记忆形成和提取的认知过程关联起来。
目前,由于神经成像和单细胞神经生理学所提出的问题类型存在根本差异,因而很难弥合这两种方法之间的差距。
在一项关于记忆的典型fMRI研究中,研究人员检查了在记忆编码或提取过程中,大脑活动的强度是否因随后记住或遗漏某项内容而不同。
这些类型的研究提出的相关问题是,记忆过程成功时的“激活”[即血氧水平依赖(BOLD)信号强度]是否高于记忆过程失败过程时的“激活”。
在单个单元记录中,研究人员也关注神经活动的幅度(即峰值率),但与fMRI不同的是,典型的实验问题关注的是神经元的选择性,而不是总体的活动量。
神经生理学的最新技术进步提高了研究人员同时记录大量神经元的能力。
通过这种方法,神经生理学家已经能够理解并检查从神经元群而不是单个神经元中可以解码出什么。
随着基于神经元群的分析方法在神经生理学中的兴起,多变量分析方法已从根本上改变了记忆fMRI研究中提出的问题类型。
在一个典型的fMRI数据集中,任何给定脑区的活动,如海马体,将通过相当多的体素进行成像。
多体素模式分析(MVPA)方法不像传统方法那样关注整个体素群的平均活动水平,而是侧重于检查体素群内各个体素的活动模式。
MVPA使神经成像研究人员能够专注于与啮齿类动物神经元水平更相似的问题,从而“连接系统神经科学的分支”。
本文将重点介绍MVPA的一种特定形式,即表征相似性分析(RSA)。RSA是认知神经科学中主要的数据分析方法技术之一。
在这里,本文将考虑如何使用RSA来揭示记忆在人脑中的表现,介绍了RSA的实验设计,并从实用角度出发阐述了如何进行RSA,以及如何避免常见的分析和解释陷阱。
什么是表征相似性分析,与其他分析方法有什么关系?
在RSA中,依赖度量是在不同实验条件下体素模式的相似程度。通常,研究人员关注的是模式相似性(PS),尽管一些研究人员检查了多维尺度指标中使用的并行方法的逆方法(即相异性)。
因此,可以执行RSA并沿着结果汇总图的轴报告均值PS。虽然本文的重点是RSA在人类fMRI数据上的应用,但RSA的主要优势之一是它不局限于对单一数据类型或物种进行假设检验。
RSA的基本原理植根于群体向量分析,其基本思想是,与其观察fMRI或直接神经记录测量的平均活动水平,不如观察体素或神经元之间编码的活动分布模式。
RSA目前也开始应用于人类电生理(EEG)记录,但这超出了本文的范围。接下来将深入探讨如何对fMRI数据执行这些计算的细节。
在评估是否使用RSA时,重要的是要了解它在分析总体信号幅值或将活动模式与分类结果(例如,预测一个人是在回忆一个物体还是一张面孔)相关联的MVPA方法的分析能力。
Kriegeskorte等人(2008a)将这些差异操作化为处理神经反应是否与刺激的属性直接相关(一阶同构;更典型的是基于分类器的多变量分析目标),或者是否与理解刺激及其表征之间的联系有关(二阶同构;RSA的目标)。
传统上,fMRI数据是用单变量分析来检查的,因为分析的重点是BOLD信号的大小(即激活)作为单一的依赖度量。
单变量fMRI分析提出的相关问题是:“脑区X在实验条件A和实验条件B之间的激活量是否不同”。
在大量单变量分析中,研究人员同时对大脑中的每个体素进行单变量分析。
例如,研究人员可以测试,与不成功的检索相比,在成功回忆已学习的单词时,大脑特定区域的大部分体素是否显示出更强的激活。
如果这个区域支持与情景记忆相关的认知过程,这就是预期的模式;在这个例子中,观察到这种模式的可能区域是海马体。
由于与成功检索相关的过程(例如,认知控制的参与增加或反应选择的效率提高),大脑区域可能会显示整体活动的变化。
因此,在回忆任何事件时活动数量的增加并不能告诉你大脑区域是否代表了所回忆的特定事件。
接下来的问题是记忆研究人员通常最关心的问题,以及像RSA这样的MVPA方法在哪些方面会有帮助。
模式分类方法开始解决利用多体素信号的可变性来理解认知的问题。模式分类依赖于这样一种想法,即在感兴趣的条件之间,体素的可变性存在系统差异。
例如,如果个体研究的是物体或面孔,那么部分体素会在观看房子时优先参与,而其他体素则会在观看面孔时优先参与。
有趣的是,这些体素甚至可能位于同一区域。这种体素参与的系统差异,或者参与的程度,可以被分类器用来预测在任何给定的试次中,个体是在观看房子还是物体。
MVPA是一种模式分类,它已经从简单的对象类别分类扩展到回答各种各样的问题,从双眼竞争到谎言检测。
可以使用不同的分类方案,包括线性分类器、神经网络、线性支持向量机和高斯朴素贝叶斯分类器。
抛开这些实现细节不谈,MVPA相对于单变量分析的一个巨大进步是,它能够利用区域内的可变性来理解大脑的编码方案。
当寻找给定类别(例如,物体/面孔)或认知状态(例如,将要被记住的信息类别)的存在与否时,MVPA是最强大的。
RSA是研究高维表征空间的最佳方法,其中各项之间可以以各种方式相互关联,并且特别适合于项目之间的连续关系,而不是离散关系。
例如,在RSA的首次应用中,Kriegeskorte(2008b)表明它可以用来帮助理解和测试不同物种的视觉表征模型。
由于RSA的目标是测试观察到的(神经)表征是否与理想的或理论的表征相匹配,因此基本上可以用数据测试任何合理的假设,甚至可以用探索性的方式来帮助理解数据是如何构造的。

02
如何进行表征相似性分析?

概述

RSA并不是一个复杂的方法,但与任何方法一样,我们可以优化实验设计和数据分析,以最大限度地利用该方法。这部分将从实验设计到结果解释,描述需要考虑的问题。

简而言之,需要设计这样的任务:试次可以彼此分离,不同条件下的试次对可以通过相似性指标(例如相关性)相互关联。

最后,对这些条件下的相似性指标的汇总值进行比较,并得出结论。以下是这些步骤的详细信息。

从单变量到多变量

RSA与传统单变量分析的区别之一是,所有试次都是根据它们之间的关系进行重新组合的。

因此,在单变量分析中,可以将一种条件下的所有试次与另一种条件下的所有试次进行比较。

而在多变量分析中,可以将相同实验条件下的试次进行关联,并比较具有某一特征的试次和不具有该特征的试次之间的相关性。

为了进一步说明这一点(继续使用记忆范式),使用被试执行再认记忆测试时的扫描数据进行示例说明。

典型的记忆相关单变量对比可能会比较扫描期间正确记忆的学习项目与遗忘的学习项目之间的活动。

这种分析对于识别跟踪记忆的区域(如海马体)或过程(如回忆的存在/缺失)具有很大的价值。

然而,人们也可能会提出不同的问题,例如,当回忆发生时,大脑感兴趣区域(ROI)是否代表原始事件的信息?

为了回答这个问题,Dimsdale-Zucker等人(2018)设计过这样一项研究,参与者在两个不同的虚拟现实家庭中研究物体。参与者在一系列20个视频中研究了这两所房子中的10件物品。

因此,每个物体都有一个独特的空间(房子)和情景(视频)背景(图1)。在进行记忆检索时,要求参与者在MRI扫描仪中对研究过和未研究过的物体做出记忆判断。

为了了解编码中的空间和情景信息在检索时是如何表征的,该研究使用了RSA方法。

在这里插入图片描述
图1.实验设计示意图

为了用RSA解决这个问题,我们可以测试与相同编码情景相关联的物体在检索时是否具有神经相似性。

理论上,如果假设体素模式可以反映海马体(或任何其他大脑区域)中的分布式神经表征,那么RSA可以解决这个问题。

然而,即使这一假设成立,RSA也不一定反映出能反映实验者目标的表征。在这里,合理的实验设计尤为重要。

在这里,该研究对理解相同或不同的编码情景是否会影响在检索时观察到的神经模式感兴趣,所以该研究比较了在检索与相同研究情景相关的物体时引发的活动模式(例如,BrownHouse/Video1中出现的伞和帐篷)。
同样,该研究比较了在检索其他相同情景试次对时所引发的活动模式。例如,BrownHouse/Video1中的伞/哑铃、伞/豆袋坐垫、伞/吊灯、帐篷/哑铃等,以及GrayHouse/Video1中的飞机/橄榄球头盔、飞机/电话亭等,(原文链接:https://mp.weixin.qq.com/s/517WV-hhWXzkxc4euSQFdg)

正如在下文中所描述的那样,如果没有用于比较的基线,这些相互关系是很难进行单独解释的。

最明显的比较是使用相同的试次,但这里检查了所有可能的“不同情景”的试次对之间的相关性,即试次与相同的编码情景没有关联(例如,伞/橄榄球头盔,伞/电话亭,帐篷/橄榄球头盔等)。

再次重申,在分析的每个bin中都包含相同的试次,这是RSA和单变量分析的根本区别。

实验需要多少次试次?

一般来说,一个实验的设计应该针对相关实验问题获得尽可能多的试次对。

最佳试次数量是多少?答案几乎总是‘更多’,而最佳数量当然取决于潜在的效应大小。一般的经验法则是,在最小的bin里至少有30个试次对。

从上面的例子可以清楚地看到,在不同情景bin中的试次对要比相同情景bin中更多。

为什么这会带来问题呢?我们知道,拥有更多的试次对应该能更好地估计真实的相关值,特别是因为有噪声的试次可能对试次数量低的相关性产生更显著的影响。

因此,如果在试次较少的情况下,从bin中估计模式的不稳定性更大,那么人们可能会担心,不同条件之间观察到的模式可能只是因为它们之间的试次对的差异而不同。

而在实践中,当在相当多的试次对中进行平均时,暂未出现这种情况。

如果条件之间的bin大小不相等,一种选择是用较少的试次对来对条件进行随机重采样,以匹配条件之间的试次对的数量。

可以在图2中看到这一示例,使用的数据来自研究者实验室进行的真实研究。

在这里插入图片描述

图2.(A)平均模式相似性(PS),包括每种条件下所有可能的试次对。误差条表示均值的标准误差。(B)对平均PS中的每个被试数据进行重采样,使每个条件具有相同数量的试次对。
试次应该如何间隔?

RSA和fMRI的一个很大问题是数据的内在相关性。这是因为,即使在没有认知过程的情况下,MRI也可以测量到信号中持续的生物和机械波动。

为了减少在两个时间点测量的信号中的重叠,两个时间点需要有合理的距离,以便每个时间点的方差可以通过回归模型唯一地估计。

传统上,这意味着试次之间的间隔时间很长——通常是几十秒(慢事件相关设计)。

后来的研究表明,通过在给定的长值和短值范围内随机分配试次之间的间隔(即随机试次间间隔(ITI)),可以更有效地估计特定实验条件下不同试次之间的激活情况。

这种与事件相关的快速设计是大多数现代fMRI研究的标准。然而,对于RSA,因为我们是单独地建模每个试次,所以希望每个试次与所有其他试次最大程度地间隔开来。

在随机试次间隔设计中,一些试次在时间上更接近,而另一些则更远,当你的模型可以利用某一条件下不同试次的时间差异时,这是理想的,但对于间隔试次的独特活动而言,这并不理想。

Zeithamova等人(2017)在一组已知对这些特征敏感的典型感兴趣区域中,系统地比较了在使用RSA理解类别水平差异、项目水平差异和记忆相关差异方面的能力。

在其测试的持续时间内,刺激之间的间隔越长,项目水平和记忆相关的差异就越明显,这与现有的证据一致,即较长的试次间隔可能更有利于估计单个试次的活动模式。

检测共享类别水平信息的能力不受时间条件的影响。随机间隔试次的开始时间对检测不同表征的能力影响很小。

因此,对于具有许多条件的RSA设计,最佳的做法似乎是最大限度地将试次彼此分离,而不是像单变量设计那样试图在条件水平上进行正交化,尽管这一问题对于组内比较可能比组间比较更关键。

正如Mumford等人(2014)研究所述,试次的间隔和顺序应该是唯一的,以最大限度地减少假阳性的可能性。

如何建模自己的数据?

①Within-Run建模与Between-Run建模

收集数据后需要在分析时做出一系列选择,这些选择可能会影响对结果的解释。

一个经常被忽视的问题是,你是否计划比较相同run或试次中发生的体素模式,还是在不同run中发生的体素模式。

这两种方法都是合理的,但将相同run中不同试次的体素模式和不同run中不同试次的体素模式关联起来是不合适的。

尽管假设BOLD反应只由神经影响驱动的,但我们知道,与认知过程的时间进程相比,随着时间的推移,存在着相对缓慢的生物和机械波动。

这必然意味着相邻的试次共享更多的方差,即使是与任务无关的不感兴趣的方差。

不仅相邻试次之间的差异更大,而且由于扫描漂移等任务不变的原因,相同run中的试次与其他run中的试次相比更加相似。

这意味着,如果在比较PS时包含了run内试次和run间试次,则相关性值被人为夸大了。

在相同run中包含更大试次相关性的条件下,PS应高于在不同run中包含更大试次相关性的条件。是查看run内PS还是run间PS的问题通常由任务决定。

在记忆设计或在其他范式中,你可能无法控制每个bin中有多少个试次,通常最好只在run间执行RSA,因为这应该增加每种条件下试次对的总数。

然而,对于某些设计来说,这是没有意义的。因此,RSA必须在相同run中执行。

一个相关的问题是,更少、更长的run更好,还是更多、更短的run更好。对于其他分类技术(如MVPA),通常会留一run来验证分类,因此有更多的run是有利的。

如果你计划在run内执行RSA,那么更长时间的run会更好,因为这意味着你可以在每个run中进行更多的观察。

对于run间的RSA,更短时间的run也是可取的。研究者认为标准惯例是对任务中的认知过程做最合适的事情,并尽可能获得最干净的数据(例如,过长的run通常会有更多的运动伪影)。

②预处理

无论RSA是在相同run或不同run的试次对之间进行计算,数据清理和预处理过程都是相似的。

实际上,RSA的初始预处理阶段几乎与标准的单变量分析相同(一般预处理的标准化建议,详见https://fmriprep.readthedocs.io/en/stable/)。

在这里,首先运行数据质量检查,生成关于一般噪声时间点的信息,这些信息可以作为峰值回归因子包括在fMRI模型中,并作为运动参数再次在fMRI模型中使用。

然后,在每个功能运行中对数据进行共配准,将功能数据重新对齐到结构空间中,并最小限度地平滑数据(例如,对于标准的3mm各向同性体素,我们可能使用2mm全宽半最大(FWHM)平滑核)。

虽然如果我们计划研究一个以体素为单位的模式,在体素之间平滑可能看起来很奇怪,但适度的空间平滑可以增强信噪比和提高分类精度,同时保持分布式模式信息。

如果你正在研究区域的体素模式,在这些区域中解剖精度是假设的一部分(例如,海马体素模式在海马亚场之间的差异),那么不应该进行平滑处理。

③单个试次建模

RSA的一个重要考虑因素是如何对数据进行建模。这是一个潜在的问题,因为BOLD信号的延时性,人们必须对相邻的、间隔紧密的试次的重叠反应进行解卷积。

在标准的单变量fMRI分析中,这通常不是一个重要的问题,因为在标准的单变量fMRI分析中,人们通常希望从一个给定的条件中估计所有试次的平均反应。

在一些实验中,人们可以使用与标准单变量分析相同的方法对数据进行建模。

例如,如果感兴趣的条件有多次重复,并且如果你正在计算不同run或被试的模式相关性,那么使用回归器对数据进行建模将是有利的,该回归器可以在感兴趣的条件下对所有试次进行建模。

这种方法通常是最优的,因为它可以直接获得每个条件下活动的稳定估计,因为该模型适用于多个观测值。然而,这种方法对于许多记忆范式可能不是最优的。

例如,如果你在检索时呈现的是学习过的和新的图像,你不希望重复探测个体对每个项目的记忆。

即使在一个条件中有重复的项目(例如,你可以将所有记住的试次一起建模,即使这些都是不同的项目),如果你想在不同的条件下组合试次对(例如,记住的试次可能与不同的编码情景相关),在这种情况下,将这些试次一起建模可能不合适。

对于那些不能使用传统设计和分析方法的情况,Mumford及其同事已经给出了几种方法来单独估计每个试次的反应。

这些方法基本上涉及对每个待估计的试次进行不同的广义线性模型(GLM)分析。在每个模型中,将一个感兴趣的试次与其他试次单独建模。

对于不感兴趣的试次进行建模有不同的变式,以使它们最大限度地与当前感兴趣的试次正交。

在实践中,不同的建模方法之间不应该有太大的差异,但根据你的实验问题,选择最合适的特定建模方法是非常重要的。

即使采用Mumford推荐的单试次建模方法,在时间间隔较近的试次中,估计的反应之间也存在相对较强的相关性(图3)。

绘制相关矩阵并查看自相关范围的下降位置,这对于决定在试次对之间删除多少步是非常宝贵的。

在这里插入图片描述

图3.单个被试在四次run中所有试次对的图形表示
一些人还建议将一阶时间导数作为吸收试次之间不同滞后的额外血流动力学差异的一种方法。然而,当试次在时间上相对接近时,这些时间导数实际上可以促进模型中回归量之间的共线性。
因此,对于单试次建模方法,通常建议不包括时间导数。
无论选择何种数据建模方法,建模结束后,目标是获得每个感兴趣的试次或试次类型的单个beta图像(即成像区域中每个体素的参数估计矩阵)。这些beta图像将用于计算PS值。
如何使用表征相似性分析来检验关于特定区域的假设?
RSA和其他多变量技术的目标是理解信息是如何表征的。通常目标是检验一个原则性假设,即ROI如何表征信息。
为了继续前面介绍的实验示例[Dimsdale-Zucker等人(2018)],使用基于ROI的RSA方法来考察当检索物品时,海马体的不同亚区是如何表示情景信息的。
为此,当参与者回忆之前在不同空间(房子)和情景(视频)背景下研究过的物品时,研究者测量了CA1和CA2/3亚区/齿状回(DG)的活动模式。
结果发现,物品的空间情景并没有区分亚区中的表征模式。
然而,当观察在相同或不同情景中出现的物品时,CA1和CA2/3/DG的模式不同。
在CA1中,共同情景的物品比来自不同情景的物品表现出更相似的特征,而CA2/3/DG则表现出相反的模式。
因此,采用基于ROI的RSA方法使我们能够回答有关不同亚区如何表征情景信息的问题,并在文献中相对立的假设之间进行更好地判断。
ROI通常是根据解剖特征、任务响应性或连接特征进行描述。ROI的定义不应与PS分析相重复。
例如,如果你想测试记住的项目是否比遗忘的项目更具相似性特征,不应该根据记住和遗忘项目之间的单变量对比来定义ROI。
一旦选择了ROI,就有必要为感兴趣的每个试次或条件分别提取ROI中每个体素的激活估计。
对于任何给定的试次或条件,相应的体素模式向量由不同体素的激活估计集合组成。
所有试次的体素模式向量可以连接在一个体素-试次矩阵中。该矩阵的维度会因ROI而异,因为ROI是由解剖结构定义的,而不是绝对体素数量定义的。
接下来,可以在每对体素模式向量上计算相似性指标(例如,Pearson’s r),这将产生一个方形的、逐个试次的相似性矩阵。
如果计算的是run之间的相关性,这将是一个针对所有run的所有试次的逐个试次矩阵。
如何使用表征相似性分析来检验一个非区域特异性的假设?
如果你想打电话向蝙蝠侠寻求帮助,那么你可以照亮受影响城市的整个天空,这类似于ROI方法。
或者,人们可以系统地把聚光灯移动到给定区域的所有点上,这是探照灯背后的一般思想。
探照灯MVPA分析通常在对显示预期效果的区域没有强假设的情况下执行。探照灯的使用不是直接查看整个解剖区域,而是在整个大脑或特定的ROI中创建一个小体积进行移动观察。
因此,探照灯的大小和形状会对观测到的效果产生很大的影响。在解决选择形状和大小的问题之前,重要的是要了解到探照灯的尺寸决定了你寻找的模式的平滑度。
小的探照灯更容易识别小的块状模式,而较大的探照灯则会平滑你要找的模式。
在该实验示例中,通常感兴趣的是观察海马体本身或周围内侧颞叶皮层区域的记忆相关活动。
因此,这里倾向于使用相对较小的探照灯,直径约为5体素,这种探照灯有一个中心节点,在三维空间中有相等长度的臂(从该中心节点延伸出两个体素,见图4)。
然而,其他人使用了球形、菱形或其他形状的探照灯(有关这些形状的实现,请参见http://cosmomvpa.org/)。
在这里插入图片描述

【补充:CoSMoMVPA是近年来比较火的多模态、多变量模式分析(MVPA)工具箱】

然后,将这个探照灯体积视为一个微小的ROI,并从该探照灯体积内的所有体素中提取值,在该探照灯体积的所有试次中重复此过程,并最终计算出分配给中心体素节点的探照灯的模式相似性值。
接下来,人们可以系统地在大脑中移动探照灯掩模,计算每个位置的体素模式相似性分析。重复此过程,直到搜索空间内的所有位置都采样完毕。
排除探照灯中超出感兴趣体积范围的任何部分,并且,如果探照灯空间中的体素总数小于9体素,则不计算这个中心节点位置的模式相关性。这一截点确保了估计的相关性是相对稳定的。
在这里插入图片描述

图4.示例:直径为5体素的探照灯

与基于ROI的RSA不同(提取成对试次的活动),使用探照灯时,更常见的是为两个感兴趣条件减去探照灯映射。这将产生整个探照灯空间的地图,其中探照灯的体素模式存在差异。
虽然这些地图看起来像单变量对比图,但它们的解释是不同的。谈论一个以区域为中心的探照灯比谈论在表征中涉及的区域本身更合适。
如何量化相似性?
顾名思义,RSA是分析在不同条件下诱发的活动模式之间的相似性。然而,这可能是一个棘手的问题,因为相似性可以用不同的方式定义和测量。
如果用最简单的方式表示试次的相似性值,可以考虑将每个试次的值标记为x/y坐标空间中的一个点,并扩展连接原点和这些点的连线(模式向量)。
然后,概括这两点之间的距离,可以是相对于连接它们的直线的距离,也可以是这些模式向量在原点处测量的夹角。
其他类似的距离指标,如欧氏距离和马氏距离,以及使用角度度量的皮尔逊相关距离和余弦距离。
任何移动到原点的距离(例如,MRI基线的移动)都会影响与角度相关而不是与直线相关的指标,而线长度的变化会影响与直线相关而不是与角度相关的指标。
接下来将从皮尔逊相关距离的描述开始,因为它可能是RSA中最常用的距离指标。
RSA中最早使用的就是皮尔逊相关,也是目前神经成像研究中最常用的相似性指标。皮尔逊相关性的优点是易于计算,从数学上讲,它不受数据均值差异和变异性的影响。
余弦距离与皮尔逊相关性密切相关,因为它与模式向量的角度有关。事实上,这与从每个体素中去除平均模式时的皮尔逊相关性是相同的。
在实践中,许多读者不熟悉余弦距离,而皮尔逊相关是众所周知的。然而,皮尔逊相关性更常用作两个变量之间关联的度量,而不是相似性度量,这可能会导致一些直观的误解。
例如,理论上,两个试次之间的PS可能与-0.8的r值相关。
直观地说,这意味着两个变量之间存在很强的关联,但是,在RSA中,负相关意味着体素模式之间的相似性非常低。
这种解释陷阱可以通过绘制相关距离度量(1-r)来避免,该度量将从0到+2之间重新缩放值。
另一种与角度相关的度量方法是欧氏距离度量。欧氏距离是一个“真正的”距离度量,也就是说,它基于欧氏几何系统,被解释为多维空间中两点之间的距离。
马氏距离与之密切相关,但将点之间的距离量化为均值标准差的函数。
本质上,马氏距离考虑了整个数据集的协方差结构,而欧氏距离可以在不估计协方差的情况下计算。
这些不同距离度量的可靠性测试并没有显示出系统性差异,RSA工具箱(例如,CoSMoMVPA,http://cosmomvpa.org/)允许使用不同的距离度量,通常只需要更改一行代码。
因此,研究人员可以选择最适用于感兴趣问题的指标,亦或是在类似研究中使用过的指标。
如何使用体素模式信息检验假设?
计算出每个条件或感兴趣试次bin的PS值后,这些数据可用于检验假设。至少有两种主要方法可以使用PS值来总结RSA的试次模式。
一种方法是生成一个理论相关矩阵或期望矩阵,人们认为它概括了条件之间的关系(图5C-E)。
当条件之间的关系很复杂或将观测数据与不同计算模型的理论预测进行比较时,这种方法通常是有用的。
然后将观察到的试次RSA矩阵与期望矩阵相关联,以得到所谓的二阶相似矩阵。目前,最佳实践是使用Kendall’s Tau来评估二阶相似性。
在这里插入图片描述

图5.用表征相似性分析检验假设的不同方法

对于更简单的实验问题,你可以直接提取不同条件下成对试次的相似性值,对它们进行平均,并比较条件之间的平均PS水平(图5A和B)。
注意,如果选择Pearson’s r作为相似性度量,那么在进行参数统计检验之前,相关性必须进行z变换(Fisher变换)。这是因为皮尔逊系数的范围在-1和+1之间,因此不是正态分布。
一般来说,可以采用与传统单变量fMRI分析相同的方式对PS值进行组水平分析。通常,组水平分析侧重于汇总统计方法,计算每个参与者的单个平均对比值,并进行成组t检验。一个更好的选择是采用混合模型分析方法。
在混合模型中,条件中的每个试次对都作为单个PS值输入模型,而不是在条件中进行平均。
此外,当使用探照灯分析或检查多个ROI的数据时,进行多重比较校正是非常重要的。最直接的方法是使用非参数方法,如置换检验。

03
陷阱、问题和解决方法

降噪

虽然这在RSA中不是一个公认的问题,但重要的是要考虑到fMRI数据本身是有噪声的。

即使是一个较大的感知或认知信号,引起观察到的BOLD信号变化最多在2%-4%左右。在典型的记忆研究中,信号变化通常在0.25%-0.5%左右。

因此,采取一些额外的步骤从数据中去除噪声源和干扰方差是很重要的。这些步骤的效果可能较小,但如果这些去噪技术能够产生一个以前不存在的效果,那么也会让人感到担忧!

然而,我们已经看到,在基于任务和模式的fMRI中,仔细的数据清洗可以提高信噪比和对相对较小信号的敏感性。

体素水平的清洗

其中一个清洗步骤是识别并去除那些波动幅度超过某些数据范围的噪声体素(例如,在所有run中,信号变化平均值大于3个标准差)。如此大的波动通常是由运动伪影引起的。

例如,靠近大脑边缘或信号缺失区域的体素可能在扫描过程中交替采样大脑和非大脑区域。识别这些体素的一种方法是查看每个体素的时间进程。

如果确实存在噪声体素,那么它们的平均信号(或信号中的均值标准差)应该位于所有其他体素的分布之外。

然而,重要的是要确保这种变异性与你的任务无关。一般会使用3-5个标准差的临界值。

根据经验,需要排除的体素很少,但许多体素的大幅波动往往预示着更深层次的问题(例如,过度的运动伪影;ROI与功能数据的错位)。

与其排除最有可能产生噪声的体素,另一种方法是只使用最有可能产生信号的体素。这种方法被称为特征选择,在基于分类的多变量方法中相对常见,特别是当整个大脑都被用于分类时。

特征选择在RSA中并不常用,如果你使用特征选择,以无偏的方式选择体素是非常重要的。

试次水平的清洗

从体素水平往上扩展,我们也可以考虑试次水平上的噪声。

当你单独对单个试次的激活值进行建模时,总会有一些试次与模型的拟合不佳,或者由于某种原因,试次具有极端的激活估计。

原则上,去除异常试次的方法与去除异常体素相同。

也就是说,为了识别异常值试次,需要查看每个被试的beta值分布(例如,通过计算ROI内每个试次的平均beta值),并在整个被试样本中确定阈值临界值。

还可以尝试使用更标准化的方法,即基于z分数方法或百分位排序来确定分界点。重要的是,你所选择的指标对你的数据来说必须是合理的,并在应用中保持一致。

如果在每个参与者中删除了超过10%-15%的beta数据,这通常表明数据存在其他问题。目视检查确定要删除的beta也是一个好主意。

例如,图6显示了一个检测到的扫描仪伪影,这些beta显然是非神经噪音源,应该从其余的分析管道中删除。

在这里插入图片描述

图6.被识别为异常值并从分析管道中删除的“条纹”beta的示例。在FSL中可视化(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki)

另一种减少噪声体素影响的方法是使用t图而不是beta图来提取感兴趣的模式。
虽然特征选择从分析中删除了整个体素,但可以包括所有体素,并使用t值来对通常更有信息量的体素或试次进行加权分析。t统计量就是用方差缩放的beta值。
这意味着最极端的体素比稳定体素受到更大的惩罚,因为它们在不同时间点上的变化更大。
同样,这种方法不应该产生以前不存在的模式,而是应该提高检测任务依赖PS效应的灵敏度(图7为腹侧视觉皮层的例子)。

在这里插入图片描述

图7.使用beta(暖色)与t图(冷色)对相同项目的重复呈现与不同项目的呈现进行表征相似性分析的对比
可以看到,使用t图的RSA能更好地识别腹侧视觉皮层的PS效应。
不同条件之间的试次数目不相等
在记忆范式中,通常需要将模式相关性与试次对数目不等的条件进行比较。不幸的是,在这种设计中,与不同情景相关的试次对可能比与相同情景相关的试次对更多。
综述和社区通常关注的问题是,一项分析是否可能存在偏倚,因为有些结果显示试次对较少的条件比试次对较多的条件具有更高的相关性。
解决这一问题的一种方法是重新进行分析,通过从更多试次的条件中进行二次抽样,从而使试次对的数量相等。
即使试次对的数量不同,如果每种条件下试次对的数量都相当大,结果有可能保持稳定。
单变量活动对多变量模式的影响
一般来说,研究人员希望单变量和多变量fMRI分析能够揭示不同类型的定性信息。人们通常担忧的是,PS差异是否与两种条件下的总体激活幅度差异相混淆。
从计算的角度来看,没有理由认为神经网络中的不同表征应该与相同的总体放电率相关联。
尽管如此,许多研究人员认为,只有当模式差异不是由总体激活幅度驱动时,才可以解释RSA。
从实际的角度来看,单变量激活混淆的问题通常无关紧要。
但如果在两个不同的编码条件之间存在单变量差异(例如,视频1和3之间发现了较大的激活差异,并且所有感兴趣的试次对都来自这两个视频),则可能存在需要关注的单变量混淆因素。
然而,在许多情况下,这种混淆不太可能是偶然出现的。在其他情况下,研究人员试图通过去除平均条件效应或显示单变量和多变量效应中所包含的信息不同来区分单变量和多变量带来的影响。
被试特异性混淆的影响
例如,一名被试在A条件比B条件快100ms,而另一名被试在B条件比A条件快100ms。
一个对RT敏感的脑区可以用来对两名被试的A和B状态进行分类,尽管事实上,在不同的条件下,被试的平均RT是相等的。
在这种情况下,我们不知道条件A和条件B之间的准确分类是否反映了潜在表征中的感兴趣差异,还是反映了与反应延迟或任务难度有关的个体差异的结果。
Todd等人的研究表明,RSA比基于分类的方法更不容易受到这些类型的混淆。无论是否考虑反应时间,都不会改变观察到的效应模式。
但是,如果感兴趣的条件之间存在反应时间差异,考虑被试特异性是一个合理而直接的常规控制分析。

04
结论

自RSA被引入人类成像领域以来,使用RSA或其他多变量技术的出版物数量稳步增长。RSA在将该领域从区域内定位推进到理解这些区域如何表征信息方面特别有用。
尽管我们仍然对神经活动如何驱动多体素活动模式的大规模差异知之甚少,但RSA是弥合人类fMRI和动物模型中侵入性记录研究之间差距的宝贵工具。
RSA现在也开始应用于记忆和头皮EEG研究,这表明RSA是一种高度灵活的分析技术。在未来,希望继续使用RSA和其他多变量技术来增强我们对思维和大脑的理解。
通过以上的阅读,相信大家都对本期内容有了比较全面的了解。那么,今天的分享就介绍到这里啦,我们下期再见~

参考文献

[1]Representational Similarity Analyses : A Practical Guide for Functional MRI Applications. Handbook of In Vivo Neural Plasticity Techniques(CHAPTER 27). https://doi.org/10.1016/B978-0-12-812028-6.00027-6
转载自公众号“茗创科技”

排 版 | 小莲蓉

校 对 | 喵君姐姐 Uka

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
fMRI(功能性磁共振成像)是一种用于研究人脑功能活动的神经影像学技术。然而,原始fMRI数据在获取后经常包含噪声和伪影,需要进行预处理以提高数据质量。以下是fmri数据预处理的必要性: 1. 噪声滤除:原始fMRI数据中存在来自许多源的噪声,如运动噪声、器件噪声和生物噪声等。预处理过程涉及运动校正,通过校正受试者头部运动来消除影响。同时,还进行了估计和消除噪声源的步骤,以降低噪声对结果的影响。 2. 去除伪影:由于fMRI图像获取过程中磁场不均匀性等原因,会引入伪影。这些伪影可能会导致数据畸变并干扰结果的准确性。通过去除伪影,可以提高图像的空间匹配度和准确性。 3. 校正时间延迟:在时间序列数据中,fMRI采集的各个体验点之间可能存在一些时间延迟。这些延迟可能是由于血液供应的差异或数据采集的不均匀引起的。通过对数据进行时间校正,可以使各个时间点的数据对齐,从而提高时间序列的可靠性和准确性。 4. 数据同质性:fMRI数据是大脑在不同时刻活动的反映,因此需要保证数据的同质性,以便比较和分析不同个体之间或不同条件下的数据。预处理过程中进行的空间标准化操作将原始数据转换为标准大脑空间,确保数据之间的一致性和可比性。 5. 提高统计分析效果:fMRI数据分析通常涉及到假设检验或模式分类等统计方法。对原始数据进行预处理可以减少假阳性的可能性,并提高结果的可解释性和可信度。 综上所述,fmri数据预处理是必要的,可以提高数据的质量和可靠性,减少噪声和伪影的干扰,并使数据更方便进行后续的统计分析和解释。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

壹脑云

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值