在Pycharm中添加外部工具运行Python Spark

本文详细介绍了如何在PyCharm中添加并配置外部工具以方便运行Python Spark程序,包括设置spark-submit的路径、参数,以及针对YARN和Standalone模式的特定配置。通过这种方式,可以避免在终端手动输入复杂命令,提高开发效率。
摘要由CSDN通过智能技术生成

终端命令以不同模式运行Python Spark

在“终端”中以不同模式运行Python Spark程序需要输入很长的命令,例如分别以local、Hadoop YARN、和Spark Standalone模式运行Python Spark(这里以~/pythonwork/PythonProject/wordcount.py为例)每次都要输入命令:

local:

cd ~/pythonwork/PythonProject
spark-submit --driver-memory 2g --master local[4] wordcount.py

Hadoop YARN:

cd ~/pythonwork/PythonProject
Hadoop_CONF_DIR=/usr/local/hadoop/etc/hadoop spark-submit --driver-memory 512m --executor-cores 2 --master yarn --deploy-mode client wordcount.py

Spark Standalone:

cd ~/pythonwork/PythonProject
spark-submit --master spark://master:7077 --deploy-mode client --executor-memory 500M --deploy-mode client --total-executor-cores 2 wordcount.py


Pycharm添加spark-submi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值