1. 三维空间刚体运动(笔记)

博客探讨了三维空间中刚体的运动,特别是相机的运动,强调了刚体运动保持向量的长度和夹角不变。内容包括旋转矩阵的性质,如正交性和行列式为1,以及描述旋转的不同方式:齐次坐标、旋转向量、欧拉角和四元数。旋转向量允许用较少元素表示旋转,而四元数在3D空间中扩展了单位复数的概念,用于避免万向锁问题。
摘要由CSDN通过智能技术生成

刚体运动:位置(空间中的地方) + 姿态(相机朝向) ——> 点 + 向量
相机运动就是刚体运动 保证同一向量在各个坐标系下的夹角和长度都不变 (欧式变换) : 旋转 + 位移
点和坐标
2D : (x,y,θ)T
3D:怎么用数学形式描述3个轴的旋转?
世界坐标系和相机坐标系转换
旋转矩阵:
这里写图片描述
因为刚体运动 向量不变 所以第一个等号成立
旋转矩阵 :正交矩阵 (R逆等于R转置; R转置▪R= I)
行列式 为 1
这里写图片描述
描述旋转的方式
1.齐次坐标:乘任意非零常数仍表达同一坐标

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值