矩阵的迹相关性质

迹的定义

在线性代数中,一个 n × n n\times n n×n的矩阵 A A A的迹,是指 A A A的主对角线(从左上方至右下方)上各个元素的和,一般记作 t r ( A ) tr(A) tr(A) S p ( A ) Sp(A) Sp(A)
t r ( A ) = ∑ i = 1 n a i i tr(A)=\sum\limits_{i=1}^{n}a_{ii} tr(A)=i=1naii

一个矩阵的迹是其特征值的总和

迹的性质

线性函数

对于任意两个 n × n n\times n n×n的矩阵 A A A B B B和标量 r r r,都有:
t r ( A + B ) = t r ( A ) + t r ( B ) tr(A+B)=tr(A)+tr(B) tr(A+B)=tr(A)+tr(B)
t r ( r ⋅ A ) = r ⋅ t r ( A ) tr(r\cdot A)=r\cdot tr(A) tr(rA)=rtr(A)

由于一个矩阵 A A A与转置矩阵 A T A^T AT的对角线元素相同,所以任意一个矩阵和其转置矩阵的迹相等。
t r ( A ) = t r ( A T ) tr(A)=tr(A^T) tr(A)=tr(AT)

矩阵乘积的迹

A A A是一个 n × m n\times m n×m矩阵, B B B m × n m\times n m×n矩阵,则:
t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)

其中 A B AB AB n × n n\times n n×n矩阵, B A BA BA m × m m\times m m×m矩阵,证明如下:
t r ( A B ) = ∑ i = 1 n ( A B ) i i = ∑ i = 1 n ∑ j = 1 m A i j B j i = ∑ j = 1 m ∑ i = 1 n B j i A i j = ∑ j = 1 m ( A B ) j j = t r ( B A ) tr(AB)=\sum\limits_{i=1}^n(AB)_{ii}=\sum\limits_{i=1}^n\sum\limits_{j=1}^mA_{ij}B_{ji}=\sum\limits_{j=1}^m\sum\limits_{i=1}^nB_{ji}A_{ij}=\sum\limits_{j=1}^m(AB)_{jj}=tr(BA) tr(AB)=i=1n(AB)ii=i=1nj=1mAijBji=j=1mi=1nBjiAij=j=1m(AB)jj=tr(BA)
上述性质可进一步推导,对于 A B C ABC ABC三个方阵,可以循环改变乘积中的顺序:

t r ( A B C ) = t r ( B C A ) = t r ( C A B ) tr(ABC)=tr(BCA)=tr(CAB) tr(ABC)=tr(BCA)=tr(CAB)
注意: t r ( A B C ) ≠ t r ( A C B ) tr(ABC)\neq tr(ACB) tr(ABC)=tr(ACB)

如果 A B C ABC ABC是同样大小的方阵且是对称矩阵,其乘积的迹在所有排列下都不会改变:
t r ( A B C ) = t r ( B C A ) = t r ( C A B ) = t r ( A C B ) = t r ( B A C ) = t r ( C B A ) tr(ABC)=tr(BCA)=tr(CAB)=tr(ACB)=tr(BAC)=tr(CBA) tr(ABC)=tr(BCA)=tr(CAB)=tr(ACB)=tr(BAC)=tr(CBA)

迹的相似不变性

如果矩阵 A A A B B B相似,它们的迹相等。
A A A B B B相似,存在可逆矩阵 P P P,使得 B = P A P − 1 B=PAP^{-1} B=PAP1,则有
t r ( B ) = t r ( P A P − 1 ) = t r ( A P − 1 P ) = t r ( A ) tr(B)=tr(PAP^{-1})=tr(AP^{-1}P)=tr(A) tr(B)=tr(PAP1)=tr(AP1P)=tr(A)

矩阵迹数和特征多项式

一个 n × n n\times n n×n的方形矩阵 A A A的特征多项式 P A ( λ ) P_A(\lambda) PA(λ)定义为 A A A λ \lambda λ 倍的单位矩阵的行列式:
P A ( λ ) = d e t ( A − λ ) P_A(\lambda)=det( A-\lambda) PA(λ)=det(Aλ)

特征多项式是一个关于 λ \lambda λ n n n次多项式,它的常数项是 A A A的行列式的值,最高次项是 ( − 1 ) n λ n (-1)^n\lambda^n (1)nλn,接下来的 n − 1 n-1 n1次项为 ( − 1 ) n − 1 t r ( A ) λ n − 1 (-1)^{n-1}tr(A)\lambda^{n-1} (1)n1tr(A)λn1,则多项式:
P A ( λ ) = ( − 1 ) n λ n + ( − 1 ) n − 1 t r ( A ) λ n − 1 + ⋯ + d e t ( A ) P_A(\lambda)=(-1)^n\lambda^n+(-1)^{n-1}tr(A)\lambda^{n-1}+\cdots+det(A) PA(λ)=(1)nλn+(1)n1tr(A)λn1++det(A)

矩阵迹数与特征值

特征多项式 P A ( λ ) P_A(\lambda) PA(λ) n n n,它可以表示为:
P A ( λ ) = ( − 1 ) n ( λ − r 1 ) α 1 ( λ − r 2 ) α 2 + ⋯ + ( λ − r k ) α k P_A(\lambda)=(-1)^n(\lambda-r_1)^{\alpha_1}(\lambda-r_2)^{\alpha_2}+\cdots+(\lambda-r_k)^{\alpha_k} PA(λ)=(1)n(λr1)α1(λr2)α2++(λrk)αk
其中的 r 1 , r 2 , … , r k r_1,r_2,\dots,r_k r1,r2,,rk是特征多项式的不同的根,而 α 1 , α 2 , … , α k \alpha_1,\alpha_2,\dots,\alpha_k α1,α2,,αk是根在特征多项式的重数,称为代数重数。所有的代数重数加起来等于 n n n

我们知道,特征多项式的根就是矩阵的特征值,以及根与多项式系数的关系可以得到:特征多项式所有的根加起来等于矩阵的迹:
t r ( A ) = α 1 r 1 + α 2 r 2 + ⋯ + α k r k tr(A)=\alpha_1r_1+\alpha_2r_2+\cdots+\alpha_kr_k tr(A)=α1r1+α2r2++αkrk

如果不区分特征值或者特征值不同的话,也可以写作:
t r ( A ) = λ 1 + λ 2 + ⋯ + λ n tr(A)=\lambda_1+\lambda_2+\cdots+\lambda_n tr(A)=λ1+λ2++λn
其中 λ 1 + λ 2 + ⋯ + λ n \lambda_1+\lambda_2+\cdots+\lambda_n λ1+λ2++λn是矩阵的特征值,而且有:
∀ m ∈ N , t r ( A m ) = λ 1 m + λ 2 m + ⋯ + λ n m \forall m\in \mathbb{N}, tr(A^m)=\lambda_1^m+\lambda_2^m+\cdots+\lambda_n^m mN,tr(Am)=λ1m+λ2m++λnm

参考

  • 1
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值