trl + 大模型reward训练

一、定义

1.强化学习-reward训练
2.reward 模型重新加载与训练

二、实现

https://www.kaggle.com/code/neuqsnail/open-llama-finetune-sequenceclassification/notebook#Save-and-reload-Model
1.trl 强化训练-reward训练案例
#注意:lora训练需要 task_type 为 SEQ_CLS
1. 下载trl 训练脚本
2. 指令训练

python examples/scripts/reward_modeling.py \
    --model_name_or_path Qwen/Qwen2-0.5B-Instruct \
    --dataset_name trl-lib/ultrafeedback_binarized \
    --output_dir Qwen2-0.5B-Reward-LoRA \
    --per_device_train_batch_size 8 \
    --num_train_epochs 1 \
    --gradient_checkpointing True \
    --learning_rate 1.0e-4 \
    --logging_steps 25 \
    --eval_strategy steps \
    --eval_steps 50 \
    --max_length 2048 \
    --task_type SEQ_CLS\
    --use_peft \
    --lora_r 32 \
    --lora_alpha 16

对应代码

import warnings

import torch
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser

from trl import (
    ModelConfig,
    RewardConfig,
    RewardTrainer,
    ScriptArguments,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
    setup_chat_format,
)


if __name__ == "__main__":
    parser = HfArgumentParser((ScriptArguments, RewardConfig, Model
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值