TRL训练自定义

TRL训练自定义

TRL 的设计考虑到了模块化,以便用户能够根据自己的需求高效地定制培训循环。以下是一些有关如何应用和测试不同技术的示例。

在多个 GPU/节点上进行训练

TRL 中的训练器使用 🤗 Accelerate 来实现跨多个 GPU 或节点的分布式训练。为此,首先通过运行创建一个 🤗 加速配置文件

accelerate config

并根据您的多GPU /多节点设置回答问题。然后,您可以通过运行来启动分布式训练:

accelerate launch your_script.py

我们还在examples文件夹中提供了可以用作模板的配置文件。要使用这些模板,只需在启动作业时将路径传递给配置文件,例如:

accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml --num_processes {NUM_GPUS} path_to_script.py --all_arguments_of_the_script

有关更多详细信息,请参阅示例页面。

使用 DeepSpeed 进行分布式训练

TRL 中的所有训练器都可以与 DeepSpeed ZeRO-{1,2,3} 一起在多个 GPU 上运行,以实现优化器状态、梯度和模型权重的高效分片。为此,请运行:

accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero{1,2,3}.yaml --num_processes {NUM_GPUS} path_to_your_script.py --all_arguments_of_the_script

注意,对于ZeRO-3,需要做一个小调整,通过ZeRO-3 init context manager()上下文管理器在正确的设备上初始化奖励模型。特别是,这需要避免DeepSpeed在固定数量的训练步骤后挂起。下面是情绪调优示例中所涉及的内容的一个片段

ds_plugin = ppo_trainer.accelerator.state.deepspeed_plugin
if ds_plugin is not None and ds_plugin.is_zero3_init_enabled():
    with ds_plugin.zero3_init_context_manager(enable=False):
        sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)
else:
    sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)

有关DeepSpeed插件的
更多信息,请参阅[Accelerate文档

使用不同的优化器

默认情况下,PPOTrainer会创建一个torch.optim.Adam优化器。您可以创建并定义不同的优化器并将其传递给PPOTrainer:

import torch
from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead

# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)


# 2. Create optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)


# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)

为了进行内存高效的微调,您还可以Adam8bit从以下位置传递优化器bitsandbytes:

import torch
import bitsandbytes as bnb

from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead

# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)


# 2. Create optimizer
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=config.learning_rate)

# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)

使用LION优化器

您也可以使用Google 的新LION 优化器,首先在此处获取优化器定义的源代码,然后复制它,以便您可以导入优化器。确保通过考虑可训练参数来初始化优化器,以实现更高效的内存训练:

optimizer = Lion(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.config.learning_rate)

...
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)

在这里插入图片描述

添加学习率调度程序

您还可以通过添加学习率调度程序来进行训练!

import torch
from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead

# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)


# 2. Create optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)

# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer, lr_scheduler=lr_scheduler)

通过共享层进行内存高效微调

另一个可用于提高内存效率微调的工具是在参考模型和要训练的模型之间共享层。

import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model

# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
model_ref = create_reference_model(model, num_shared_layers=6)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')

# 2. initialize trainer
ppo_config = {'batch_size': 1}
config = PPOConfig(**ppo_config)
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer)

通过 8 位参考模型

由于使用 usingtrl加载模型时支持所有关键字参数,因此您还可以利用from进行更有效的内存微调。transformersfrom_pretrainedload_in_8bittransformers

transformers 在此处阅读有关 8 位模型加载的更多信息

# 0. imports
# pip install bitsandbytes
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead

# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m', device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')

# 2. initialize trainer
ppo_config = {'batch_size': 1}
config = PPOConfig(**ppo_config)
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer)

使用 CUDA 缓存优化器

在训练大型模型时,您应该通过迭代清除来更好地处理 CUDA 缓存。这样做,只需传递optimize_cuda_cache=TruePPOConfig

config = PPOConfig(..., optimize_cuda_cache=True)

使用分数缩放/归一化/剪辑

正如大型语言模型第一部分:PPO 中 RLHF 所建议的,我们支持分数(又名奖励)缩放/标准化/裁剪,以通过以下方式提高训练稳定性PPOConfig:

在这里插入代码片

要运行ppo.py,您可以使用以下命令:

from trl import PPOConfig

ppo_config = {
    use_score_scaling=True,
    use_score_norm=True,
    score_clip=0.5,
}
config = PPOConfig(**ppo_config)

要运行popo .py,可以使用以下命令

python examples/scripts/ppo.py --log_with wandb --use_score_scaling --use_score_norm --score_clip 0.5
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 是德5080矢网是一种用于高速数字通信系统测试的仪器,它可以测量和分析信号的电气特性和时域行为。矢网通常需要进行校准以确保测量结果的准确性和可靠性。 在进行校准时,我们需要使用特定的校准文件来消除仪器本身和测量系统的误差。德5080矢网的TRL校准方法是一种常见的校准方法,它主要用于校准高频回路和微波单元。 自定义TRL校准文件是根据特定测试需求而定制的校准文件。根据不同的测试要求,我们可以通过将已知的理论参考平面和加载器组件的S参数输入矢网来建立和创建自定义TRL校准文件。 自定义TRL校准文件的创建过程通常分为以下几个步骤: 首先,选择适当的参考平面并测量其S参数。参考平面是已知电气特性的组件,通常为理想导体或标准化元器件,如开路、短路和50欧姆负载。 然后,测量加载器组件的S参数。加载器组件是待测器件,它是需要校准的被测对象。加载器组件的S参数测量可通过连接加载器与参考平面并使用矢网测量得到。 接下来,将这些测量结果输入到矢网中,并进行校准文件的计算和创建。校准文件的计算可以通过矢网上的软件工具和算法来完成。校准文件的目的是通过测量参考平面和加载器组件的S参数之间的差异来消除系统的误差。 最后,我们可以将自定义TRL校准文件保存到矢网中,并在测试和测量中应用该校准文件。通过在测试中使用校准文件,我们可以在测量结果中更准确地去除仪器和系统的误差,获得可靠和准确的测试数据。 总之,是德5080矢网的自定义TRL校准文件是一种根据特定测试需求来定制的校准文件,用于确保测量结果的可靠性和准确性。通过选择适当的参考平面和加载器组件,进行测量和计算,创建自定义TRL校准文件后,在测试中应用该校准文件可提高测量结果的精确度。 ### 回答2: 是德5080矢网是一种性能稳定、精度高的仪器,可以用于测量和分析高频电路的特性。它能够进行矢量网络分析、频率域分析和时间域分析等多种功能。 在使用是德5080矢网进行测量时,为了保证测量结果的准确性和可靠性,需要进行校准操作。校准操作就是通过与已知标准器件进行比较,调整仪器的参数,使其能够准确测量测试物件的特性。 自定义TRL校准文件是为了满足特定领域或特殊需求的用户进行校准而开发的功能。用户可以根据自己的需要,自定义校准系数,以便更好地适应特定测量场景。 一般情况下,TRL校准包括引线校准(T),反射校准(R)和互相校准(L)。引线校准用于消除测试连接中引线的影响,反射校准则用于测量端口的反射性能,互相校准用于消除测试连接中电路的相互耦合等影响。 用户可以按照仪器提供的操作指南,自定义TRL校准文件。一般需要先进行标准器件的准备工作,然后进入校准操作界面,按照指导进行校准系数的自定义。可以设置不同的校准频率、校准参数、校准器件等。 自定义TRL校准文件可以更好地适应实际的测量需求,提高测量的准确性和可靠性。同时,也可以为特定领域的研究提供支持,满足用户对仪器性能的个性化要求。 ### 回答3: 是德5080矢网是一种用于测试和校准射频(RF)设备的工业仪器。为了确保测试结果的准确性和可靠性,矢网通常需要进行校准。校准文件可以更正仪器的系统误差,以提高测试的精度。 自定义TRL校准文件是一种特殊类型的校准文件,用于校准矢网上的反射和传输线损耗测量。它通过量化和修正各种误差来提高测量结果的准确性。 首先,自定义TRL校准文件需要在实际测试环境中进行。用户需要准备适当的TRL标准件和连接线,并按照特定的顺序连接到矢网上。 然后,用户需要进行一系列的校准步骤。这些步骤包括: 1. 开始前的预校准:在进行TRL校准之前,用户需要对矢网进行预校准,以消除系统误差。 2. 标定反射损耗:用户需要使用TRL标准件,对矢网的反射损耗进行标定。这可以通过比较测试部件和标准件的反射信号来完成。 3. 标定传输损耗:用户需要将TRL标准件连接到矢网的输入和输出端口,并对传输损耗进行标定。这涉及到测量标准件连接导致的信号衰减。 4. 创建TRL校准文件:校准软件将根据用户执行的校准步骤和测量数据,生成自定义TRL校准文件。这个文件将包含用于后续测试的校准数据。 最后,用户可以使用这个自定义TRL校准文件进行测试了。矢网将使用这个文件来校正测量结果,以确保准确性。通过使用自定义TRL校准文件,用户能够更精确地进行反射和传输线损耗测量,提高测试的可靠性和一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值