以下讨论均在实数域空间进行
矩阵的一些基础概念及性质
一些概念
- 正规矩阵:
A
T
A
=
A
A
T
A^TA=AA^T
ATA=AAT,又有以下两种特殊情况
- 正交矩阵(酉矩阵): A A T = E AA^T=E AAT=E
- 对称矩阵(Hermite矩阵):
A
T
=
A
A^T = A
AT=A,根据
x
T
A
x
x^TAx
xTAx的结果,又可以分成以下几类
- 正定矩阵: x T A x > 0 x^TAx>0 xTAx>0
- 半正定矩阵: x T A x > = 0 x^TAx>=0 xTAx>=0
- 负定矩阵: x T A x < 0 x^TAx<0 xTAx<0
- 半负定矩阵: x T A x < = 0 x^TAx<=0 xTAx<=0
一些性质
- Hermite矩阵可以被一个酉矩阵对角化即: U T A U = U − 1 A U = d i a g ( λ 1 , λ 2 , . . . λ n ) U^TAU=U^{-1}AU=diag(\lambda_1,\lambda_2,...\lambda_n) UTAU=U−1AU=diag(λ1,λ2,...λn),其中 U U U为酉矩阵, A A A为Hermite矩阵
- 正定矩阵的充要条件(满足以下条件之一)
- 是Hermite矩阵且特征值均大于0
- 是Hermite矩阵且各阶顺序主子式大于0
choloesky分解
可以进行choloesky的条件
正定矩阵才可以进行choloesky分解,半正定矩阵的choloesky分解不唯一
choloesky分解的表示形式
对于一个正定矩阵A,其可以分解成
A
=
L
L
T
A = LL^T
A=LLT,其中L为下三角矩阵
求解过程如下,其中
a
i
j
a_{ij}
aij代表A矩阵中第i行第j列元素,方格中的内容为L矩阵,灰色表示未求解变量,绿色表示为已知变量。
用choloesky求解线性方程组
求解复杂度:
O
(
n
3
)
O(n^3)
O(n3)
参考
- 工程数学基础教程 ISBN:9787561856505
- 数学之美:cholesky矩阵分解