矩阵分解专题

本文深入探讨了矩阵的基础概念,包括正规矩阵、正交矩阵、对称矩阵和正定矩阵的定义及其性质。特别强调了正定矩阵的特征,并指出只有正定矩阵才能进行Cholesky分解。Cholesky分解是将正定矩阵表示为下三角矩阵的乘积,用于高效求解线性方程组。此外,还介绍了正定矩阵的充要条件及其与Hermite矩阵的关系。
摘要由CSDN通过智能技术生成

以下讨论均在实数域空间进行

矩阵的一些基础概念及性质

一些概念

  • 正规矩阵: A T A = A A T A^TA=AA^T ATA=AAT,又有以下两种特殊情况
    • 正交矩阵(酉矩阵): A A T = E AA^T=E AAT=E
    • 对称矩阵(Hermite矩阵): A T = A A^T = A AT=A,根据 x T A x x^TAx xTAx的结果,又可以分成以下几类
      • 正定矩阵: x T A x > 0 x^TAx>0 xTAx>0
      • 半正定矩阵: x T A x > = 0 x^TAx>=0 xTAx>=0
      • 负定矩阵: x T A x < 0 x^TAx<0 xTAx<0
      • 半负定矩阵: x T A x < = 0 x^TAx<=0 xTAx<=0

一些性质

  • Hermite矩阵可以被一个酉矩阵对角化即: U T A U = U − 1 A U = d i a g ( λ 1 , λ 2 , . . . λ n ) U^TAU=U^{-1}AU=diag(\lambda_1,\lambda_2,...\lambda_n) UTAU=U1AU=diag(λ1,λ2,...λn),其中 U U U为酉矩阵, A A A为Hermite矩阵
  • 正定矩阵的充要条件(满足以下条件之一)
    • 是Hermite矩阵且特征值均大于0
    • 是Hermite矩阵且各阶顺序主子式大于0

choloesky分解

可以进行choloesky的条件

正定矩阵才可以进行choloesky分解,半正定矩阵的choloesky分解不唯一

choloesky分解的表示形式

对于一个正定矩阵A,其可以分解成 A = L L T A = LL^T A=LLT,其中L为下三角矩阵
求解过程如下,其中 a i j a_{ij} aij代表A矩阵中第i行第j列元素,方格中的内容为L矩阵,灰色表示未求解变量,绿色表示为已知变量。
在这里插入图片描述


在这里插入图片描述

用choloesky求解线性方程组

求解复杂度: O ( n 3 ) O(n^3) O(n3)

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值