综述-交通领域如何构建基于图深度学习模型


黄浴简介:专业领域:图像视频处理,计算摄影,机器学习,计算机视觉和数据可视化。

前几天arXiv上传论文“How to Build a Graph-Based Deep Learning Architecture in Traffic Domain: A Survey”,其中也涉及自动驾驶部分。

深度学习已经在交通领域的问题得到不错的应用,主要是时域和空域的相关性方面遇到的挑战。相比CNN,GNN明显更合适建模空域相关性。

交通领域的问题可以分为如下几个领域:交通堵塞、交通需求、交通安全、交通监控和自动驾驶等,而对应的研究方向有状态预测、需求预测、信号控制、驾驶员行为分类、事故检测和车辆检测等。

交通挑战性包括空域相关、时域相关和外部因素(天气、事故和节假日)三个。而对应的GNN技术包括如图列出的模型,如GAN、GCN、GAT、RNN、LSTM、GRU和MLP等。

根据交通基建,交通数据分为四类:道路网络的传感器数据、车载GPS轨迹、铁路系统的订单和地铁/公交系统的交易记录。

如图所示,基于交通数据图架构的构建过程:

  • 1)在传感器图中,传感器代表节点,并且道路同一侧的相邻传感器之间有一条边连接。传感器特征是自己矫正的交通测量。

  • 2)在路段图中,路段代表节点,两个相连路段有边连接。在传感器数据集中,路段特征是路段上所有传感器记录的路况平均测量值(例如,行车速度)。在GPS数据集中,每个路段特征是该路段上所有GPS点记录的路况平均测量值。

  • 3)在道路交叉点图中,道路交叉点表示节点,由路段连接的两个道路交叉点具有边连接。路段特征是通过路段交通量的总和。大多数方法将边缘方向视为交通流方向,而有些方法则构造无向图。

如图是GNN的一般结构,包括两种层:聚合层和非线性变换层。

如表是文章提到的SEQ2SEQ的编码-解码架构类。

面临的几个挑战问题中,空域相关性涉及空间局部性、多重关系和全局连通性等,时域相关性涉及多时间尺度和不同权重问题,时空相关性涉及时空交互性,外部因素涉及多个因素的一键编码(one-hot encoding)。

这是一些开源数据。

这是一些开源代码。

 

文章推荐

深度学习基础理论、框架与应用

基于深度学习的数据增广技术一览

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值