今天我们将介绍一个崭新的RAG项目:LightRAG。
现有的RAG系统老是搞不清复杂关系,答案经常被切碎,缺乏上下文,难以真正理解问题。而LightRAG就是来解决这些问题的,它把图结构引入文本索引和检索,采用双层检索系统,从低到高全面覆盖信息。更酷的是,它还能快速更新数据,保持实时高效的响应,而且它已经开源了哦!
并且你现在可以通过简单的API调用来实现多种检索模式,包括本地、全局和混合检索。
LightRAG 的工作流程分为三个核心部分:
- 图基文本索引(Graph-Based Text Indexing)
- 双层检索范式(Dual-Level Retrieval Paradigm)
- 增量知识库的快速适应
一、图基文本索引
步骤 1:实体和关系提取
-
使用大型语言模型(LLM)分析文档,自动识别出文本中的实体(如人名、地点、组织等)及其关系(如“属于”或“位于”)。
-
文本被分割成多个较小的块(chunks)来提升处理效率。
步骤 2:LLM Profiling 生成键值对
- 对每个识别出的实体和关系,LLM 生成键值对(Key-Value Pair)。其中,“键”(Key)是一个或多个关键词,而“值”(Value)是与这些实体或关系相关的文本段落。
步骤 3:去重优化
- 合并不同文档中的重复实体和关系,减少不必要的计算,提升处理速度。
二、双层检索范式
步骤 4:生成查询关键词
- 针对用户查询,系统自动提取局部关键词(low-level)和全局关键词(high-level)用于匹配检索。
步骤 5:关键词匹配
- 使用向量数据库,局部关键词会匹配相关的实体,全局关键词会匹配到相应的实体关系。
步骤 6:整合高阶相关性
- 为增强检索的准确性,LightRAG 会收集检索到的图元素的邻接节点,涉及检索到的实体及其关系的上下文。
三、检索增强的答案生成
步骤 7:使用检索到的信息
- 检索完成后,系统将提取到的实体和关系输入LLM,并基于这些信息生成答案。
步骤 8:上下文整合与答案生成
- 系统将用户查询与多源检索结果进行合并,生成符合查询语境的答案。
四、增量知识库的快速适应
步骤 9:增量更新知识库
- 新文档加入时,系统会按照之前的图基索引步骤处理新文档,将新生成的知识图谱与现有图谱数据合并,实现无缝更新。
步骤 10:减少计算开销
- 为了提升效率,LightRAG 避免重建整个知识图谱,仅更新新数据部分,从而减少计算开销,提升系统响应速度。
通过这些步骤,LightRAG 实现了更精准、更高效、更具上下文关联的知识检索和答案生成,特别是对复杂问题的解决和大规模数据处理具有显著优势。
五、LightRAG 架构实例解释
LightRAG 主要通过以下几个步骤来让信息检索更准确、更智能:
1. 从文本中提取信息:系统会读取文档,识别出重要的“实体”(比如人、地点、事物)和它们之间的“关系”(比如某人属于某组织,某事物位于某地)。
- 比如,系统可能会识别出“Beekeeper(养蜂人)”这个实体,并且提取出它与“Bee(蜜蜂)”的关系。
2. 去掉重复信息:系统会去除文档中相同的实体和关系,避免不必要的重复。这样可以减轻系统的负担,提高效率。
- 比如,系统发现同一个文档中多次提到了“Beekeeper”,但意思相同,就只保留一次。
3. 把信息放入图表:这些提取出来的实体和关系会被放入一个“图”中。在这个图里,实体是“节点”,关系是“边”,所有的节点和边相连形成了一个可以高效查询的信息网络。
- 比如,图中可以显示“Beekeeper”节点和“Bee”节点通过一条“管理(Manage)”的边相连。
4. 双层检索:当用户提问时,系统会分两步进行检索。首先,它会寻找与问题直接相关的“局部关键词”(如“Beekeeper”),然后它会寻找与这些关键词关联的“全局关键词”(如“Bee”、“Hive(蜂巢)”等)。
- 例如,用户问:“养蜂人如何管理蜂群?”系统会找到“Beekeeper”相关的信息,同时也找到了“Bee”和“Hive”的相关内容,给出更完整的答案。
5. 生成答案:系统结合检索到的信息,利用大语言模型(LLM)生成详细的答案,并且确保答案逻辑连贯、信息准确。
6. 知识更新:当有新的信息加入时,系统会把新信息无缝整合到已有的图中,确保系统总是基于最新的知识进行检索,而不会每次都重建整个系统。
这张图表可以理解为整个过程的可视化,它展示了从识别实体到检索再到生成答案的完整流程。
面对问题“哪些指标最适合评估电影推荐系统?”时,LLM首先提取低层次和高层次的关键词,用这些关键词在生成的知识图谱上检索相关的实体和关系。检索到的信息被组织成三个部分:实体、关系和相应的文本片段。然后,这些结构化的数据被送入LLM,帮助它生成一个全面的答案。
LightRAG在四个数据集/评估维度上都显示出了显著的改进,效果优于GraphRAG、NaiveRAG、RQ-RAG 、HyDE。
▲ 在四个数据集和四个评估维度下,基线与LightRAG的胜率(%)对比
LightRAG 的代码结构基于nano-graphrag,一个更小、更快的GraphRAG。
LightRAG 论文:https://arxiv.org/abs/2410.05779
六、最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】