论文阅读《Restormer: Efficient Transformer for High-Resolution Image Restoration》

在这里插入图片描述
论文地址:https://openaccess.thecvf.com/content/CVPR2022/html/Zamir_Restormer_Efficient_Transformer_for_High-Resolution_Image_Restoration_CVPR_2022_paper.html
源码地址:https://github.com/swz30/Restormer


概述

   图像恢复任务旨在从受到各种扰动(噪声、模糊、雨滴等)影响的低质量图像中恢复出高质量图像,该任务需要强大的先验知识作为引导。基于卷积神经网络的方法感受野受限,无法对像素间的长程依赖进行建模,且在推理过程卷积核的参数固定,无法应对多变的输入内容。相对而言,Transformer中的自注意力机制可以解决以上的问题,而传统的Transformer空间注意力计算过程显存消耗大。为了解决以上的问题,文中提出一种高效的Transformer框架(Restormer)用于图像恢复任务。该框架主要包含两个核心组件:多深度卷积头转置注意力(MDTA)模块和门控深度卷积前馈网络(GDFN)模块。

  • MDTA在特征维度上计算每个通道之间的协方差来得到一个注意力矩阵,用于对输入的特征加权。该注意力矩阵的大小只和通道数有关,降低了计算复杂度。此外,MDTA模块在计算协方差之前,还使用了1×1卷积和深度卷积来对输入的特征进行局部的混合,这样可以增强特征的空间信息,同时也可以隐含地模拟全局的像素关系。
  • GDFN用于增强特征的表达能力,通过使用了一个门控机制(即两个线性投影层的元素级乘积,其中一个投影层经过了GELU激活函数)控制信息的流动,抑制不重要的特征,而让有用的特征向前传递。此外,GDFN模块使用深度卷积来对特征进行局部的融合,从而平衡空间和通道的信息。

  得益于以上模块的引入,模型在保持计算效率的同时,能够捕捉图像中的局部和全局的像素关系,从而提高图像恢复的质量。在多个数据集上的实验结果表明,该模型可以达到了最先进的性能表现。


模型架构

在这里插入图片描述
   给定输入图像 I ∈ R H × W × 3 \mathbf{I}\in\mathbb{R}^{H\times W\times3} IRH×W×3 ,Restormer将输入图像送入特征编码层得到浅层编码特征 F 0 ∈ R H × W × C \mathbf{F_0}\in\mathbb{R}^{H\times W\times C} F0RH×W×C。继而将 F 0 \mathbf{F_0} F0 送入4层的对称编码解码结构中提取深层特征 F d ∈ R H × W × 2 C \mathbf{F_d}\in\mathbb{R}^{H\times W\times 2C} FdRH×W×2C . 每层编解码结构包含多个Transformer块,其中块的数量是从上到下递增模式,以提高模型的效率,经过编码器之后的特征维度为 F l ∈ R H 8 × W 8 × 8 C \mathbf{F}_l\in\mathbb{R}^{\frac H8\times\frac W8\times8C} FlR8H×8W×8C. 然后将下采样后的特征送入解码器中逐渐恢复高分辨率图像。Restormer使用 pixel-unshuffle 与 pixel-shuffle 来实现特征图的上采样与下采样,并借鉴UNet的形式,使用跳跃链接链接编码器与解码器的特征。在拼接特征之前使用 1 × 1 1\times 1 1×1 卷积将输入特征通道减半。在顶层将浅层特征与深层特征融合得到 F d \mathbf{F_d} Fd,保留图像中的细节纹理信息。将 F d \mathbf{F_d} Fd 送入视差精细化模块中得到细化特征后送入 3 × 3 3\times 3 3×3的卷积层生成残差图 R ∈ R H × W × 3 \mathbf{R}\in\mathbb{R}^{H\times W\times3} RRH×W×3。残差图与原图像相加后得到最后的恢复图像。

Multi-Dconv Head Transposed Attention

  
   MDTA 的核心思想是在多头自注意力层中,采用跨通道的自注意力机制来替代跨空间维度的自注意力机制,从而实现线性复杂度。此外,使用深度可分离卷积来增强局部上下文信息。
   对于输入 X X X经过层归一化后得到 Y ∈ R H ^ × W ^ × C ^ \mathbf{Y}\in\mathbb{R}^{\hat{H}\times\hat{W}\times\hat{C}} YRH^×W^×C^,然后分别经过3个卷积块( 1 × 1 1\times 1 1×1卷积与 3 × 3 3\times 3 3×3 通道可分离卷积)分支得到 Q K V \mathbf{QKV} QKV Q = W d Q W p Q Y , K = W d K W p K Y   a n d   V = W d V W p V Y \mathbf{Q}\mathrm{=}W_d^QW_p^Q\mathbf{Y},\mathbf{K}\mathrm{=}W_d^KW_p^K\mathbf{Y}\mathrm{~and~}\mathbf{V}\mathrm{=}W_d^VW_p^V\mathbf{Y} Q=WdQWpQY,K=WdKWpKY and V=WdVWpVY。对 Q K \mathbf{QK} QK后进行维度变换后进行点乘得到转置注意力 A ∈ R C ^ × C ^ A\in \mathbb{R}^{\hat{C}\times\hat{C}} ARC^×C^,整体的MDTA可以表示为:
X ^ = W p Attention ⁡ ( Q ^ , K ^ , V ^ ) + X , Attention ⁡ ( Q ^ , K ^ , V ^ ) = V ^ ⋅ Softmax ⁡ ( K ^ ⋅ Q ^ / α ) , (1) \begin{aligned}\hat{\mathbf{X}}&=W_p\operatorname{Attention}\left(\hat{\mathbf{Q}},\hat{\mathbf{K}},\hat{\mathbf{V}}\right)+\mathbf{X},\\\operatorname{Attention}\left(\hat{\mathbf{Q}},\hat{\mathbf{K}},\hat{\mathbf{V}}\right)&=\hat{\mathbf{V}}\cdot\operatorname{Softmax}\left(\hat{\mathbf{K}}\cdot\hat{\mathbf{Q}}/\alpha\right),\end{aligned}\tag{1} X^Attention(Q^,K^,V^)=WpAttention(Q^,K^,V^)+X,=V^Softmax(K^Q^/α),(1)
其中 X \mathbf{X} X X ^ \mathbf{\hat{X}} X^ 为输入与输出特征图。 Q ^ ∈ R H ^ W ^ × C ^ ; K ^ ∈ R C ^ × H ^ W ^ ; V ^ ∈ R H ^ W ^ × C ^ \hat{\mathbf{Q}}\in\mathbb{R}^{\hat{H}\hat{W}\times\hat{C}};\hat{\mathbf{K}}\in\mathbb{R}^{\hat{C}\times\hat{H}\hat{W}};\hat{\mathbf{V}}\in\mathbb{R}^{\hat{H}\hat{W}\times\hat{C}} Q^RH^W^×C^;K^RC^×H^W^;V^RH^W^×C^ α \alpha α 是一个可学习的缩放参数,用于控制在应用softmax函数之前, K ^ \mathbf{\hat{K}} K^ Q ^ \mathbf{\hat{Q}} Q^点积的大小。这样可以调节注意力的分布,避免过大或过小的值影响梯度更新。

Gated-Dconv Feed-Forward Network

在这里插入图片描述
   前馈网络(FN)是传统的Transformer模型的一个基本组件,用于对每个像素位置的特征进行独立的线性变换。它使用两个1×1卷积,一个用于扩展特征通道(通常是输入通道的 γ γ γ倍, γ = 4 γ=4 γ=4),另一个用于将通道数降回输入维度。在两个卷积之间,还应用了一个非线性激活函数。在这项工作中,作者对FN进行了两个重要的改进,以提高表示学习的效果:(1)门控机制,和(2)深度卷积,如图2(b)所示。门控机制是由两个平行的线性变换层的逐元素乘积构成的,其中一个变换层使用了GELU非线性激活函数。门控机制的作用是控制信息流的方向和强度,即抑制不重要的特征,只让有用的信息向网络的更深层传递。这样可以让每一层网络专注于学习更细粒度的图像属性,从而提高图像恢复的质量。深度卷积的作用是在进行线性变换之前,对每个通道的特征进行空间上的邻域聚合,以学习局部的图像结构。这样可以结合卷积的优势,增强特征的空间上下文。给定输入 X ∈ R H ^ × W ^ × C ^ , \mathbf{X}\in\mathbb{R}^{\hat{H}\times\hat{W}\times\hat{C}}, XRH^×W^×C^, GDFN模块可以表示为:
X ^ = W p 0  Gating  ( X ) + X , Gating ⁡ ( X ) = ϕ ( W d 1 W p 1 ( L N ( X ) ) ) ⊙ W d 2 W p 2 ( L N ( X ) ) , (2) \begin{aligned} \hat{\mathbf{X}}& =W_p^0\text{ Gating }(\mathbf{X})+\mathbf{X}, \\ \operatorname{Gating}(\mathbf{X})& =\phi(W_d^1W_p^1(\mathrm{LN}(\mathbf{X})))\odot W_d^2W_p^2(\mathrm{LN}(\mathbf{X})), \end{aligned}\tag{2} X^Gating(X)=Wp0 Gating (X)+X,=ϕ(Wd1Wp1(LN(X)))Wd2Wp2(LN(X)),(2)
其中 ⊙ \odot 表示 element-wise 乘积。 ϕ \phi ϕ 表示GELU非线性激活层。 L N \mathrm{LN} LN 表示层归一化。GDFN通过门控机制和深度卷积,对输入的特征进行有选择的信息流动和空间上下文增强。这样可以提高特征的表达能力和图像恢复的质量。GDFN在网络中起着不同于MDTA的作用。MDTA主要是用于丰富特征的全局上下文,而GDFN主要是用于控制特征的局部细节。这两个模块相互补充,共同实现高效的图像恢复。由于GDFN相比于传统的FN进行了更多的操作,作者降低了通道扩展因子γ,以保持类似的参数量和计算量以避免过拟合和过度计算的问题。

Progressive Learning

   渐进式学习的基本思想是,根据图像恢复的难度,动态地调整训练时的图像块大小。在训练的早期阶段,使用较小的图像块,以便快速学习一些基本的图像特征和先验。在训练的后期阶段,逐渐增大图像块的大小,以便捕获更多的全局图像统计信息和细节信息。渐进式学习可以让Transformer模型适应不同分辨率的图像,从而在测试时提高图像恢复的质量。渐进式学习的策略类似于课程学习的过程,即让模型从简单的任务开始,逐渐过渡到复杂的任务。这样可以避免模型在训练初期受到过于复杂或噪声的图像的干扰,而在训练后期又可以提高模型的泛化能力和鲁棒性。渐进式学习的一个挑战是,随着图像块大小的增加,训练的时间和内存消耗也会增加。为了解决这个问题,文中在增大图像块大小的同时,减小批量大小,以保持每个优化步骤的时间和内存消耗与固定图像块训练相近。使得可以在不牺牲效率的情况下,实现渐进式学习的目标。


实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 18
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV科研随想录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值