立体匹配(视差估计)评价指标(MiddleBurry、KITTI 2012、KITTI 2015、Scene Flow、ETH3D)

MiddleBurry 数据集:

评估区域

  • dics(Depth Discontinuity Region):视差不连续区域
  • all(All Region):全部区域
  • non-occ(Non-Occlusion Region):非遮挡区域

评估指标

  • bad δ D \delta_{D} δD 1 N ∑ ( x , y ) ∈ N { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > δ D } \frac{1}{N} \sum_{(x, y)\in N}\{|d_{est}(x, y)-d_{gt}(x, y)|>\delta_{D}\} N1(x,y)N{dest(x,y)dgt(x,y)>δD} :估计值与真实值相差大于 δ D \delta_{D} δD 的像素的比例, δ D \delta_{D} δD 可以取0.5、1.0、2.0、4.0
  • avgerr: 1 N ∑ ( x , y ) ∈ N ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ \frac{1}{N}\sum_{(x,y)\in N}|d_{est}(x,y)-d_{gt}(x,y)| N1(x,y)Ndest(x,y)dgt(x,y) :平均绝对误差
  • rms: 1 N ∑ ( x , y ) ∈ N ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ 2 \sqrt{\frac{1}{N} \sum_{(x, y)\in N}\left|d_{est}(x, y)-d_{gt}(x, y)\right|^{2}} N1(x,y)Ndest(x,y)dgt(x,y)2 :均方误差

KITTI 2012数据集:

  KITTI 2012 是真实驾驶场景的数据集,其包含194个训练图像对和195个测试图像对,图像分辨率为1226×370。该数据集提供了使用激光雷达获得的稀疏真实视差值。

评估区域

  • all(All Region):全部区域
  • non-occ(Non-Occlusion Region):非遮挡区域

评估指标

  若视差 ∣ d e s t − d g t ∣ < δ D |d_{est}-d_{gt}|<\delta_{D} destdgt<δD,则视为正确估计,阈值 δ D \delta_{D} δD可为2,3,4,5像素

  • Out-Noc: δ D \delta_{D} δD 1 N n o c ∑ ( x , y ) ∈ N n o c { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > δ D } \frac{1}{N_{noc}} \sum_{(x, y)\in N_{noc}}\{|d_{est}(x, y)-d_{gt}(x, y)|>\delta_{D}\} Nnoc1(x,y)Nnoc{dest(x,y)dgt(x,y)>δD} :非遮挡区域错误预测像素的比例
  • Out-All: δ D \delta_{D} δD 1 N a l l ∑ ( x , y ) ∈ N a l l { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > δ D } \frac{1}{N_{all}} \sum_{(x, y)\in N_{all}}\{|d_{est}(x, y)-d_{gt}(x, y)|>\delta_{D}\} Nall1(x,y)Nall{dest(x,y)dgt(x,y)>δD}:全部区域错误预测像素的比例
  • Avg-Noc: 1 N n o c ∑ ( x , y ) ∈ N n o c ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ \frac{1}{N_{noc}}\sum_{(x,y)\in N_{noc}}|d_{est}(x,y)-d_{gt}(x,y)| Nnoc1(x,y)Nnocdest(x,y)dgt(x,y) :非遮挡区域的端点误差(EPE-Noc)
  • Avg-All: 1 N a l l ∑ ( x , y ) ∈ N a l l ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ \frac{1}{N_{all}}\sum_{(x,y)\in N_{all}}|d_{est}(x,y)-d_{gt}(x,y)| Nall1(x,y)Nalldest(x,y)dgt(x,y) :全部区域的端点误差(EPE)

KITTI 2015数据集:

  KITTI 2015是真实驾驶场景的数据集。KITTI 2015包含200个训练图像对和200个测试图像对,图像分辨率为1242×375,该数据集提供了使用激光雷达获得的稀疏地面真实视差值。

评估图像

  • D1:评估第一帧图像
  • D2:评估第二帧图像

评估区域

  • bg(Background Regions):背景区域
  • fg(Foreground Regions):前景区域
  • all(All Region):全部区域

评估指标

  若视差或流端点误差 ∣ d e s t − d g t ∣ < 3 |d_{est}-d_{gt}|<3 destdgt<3px或 ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ d g t < 5 % \frac{{|d_{est}(x,y)-d_{gt}(x,y)|}}{d_{gt}}<5\% dgtdest(x,y)dgt(x,y)<5%则视为正确估计

  • D1-bg:对于第一帧图像,背景区域(background regions)预测错误的像素的比例

  • D1-fg:对于第一帧图像,前景区域(foreground regions)预测错误的像素的比例

  • D1-all:对于第一帧图像,所有区域(all regions)预测错误的像素的比例

  • D2-bg:对于第二帧图像,背景区域(background regions)预测错误的像素的比例

  • D2-fg:对于第二帧图像,前景区域(foreground regions)预测错误的像素的比例

  • D2-all:对于第二帧图像,所有区域(all regions)预测错误的像素的比例


Scene Flow数据集:

  Scene Flow是利用软件渲染生成的虚拟立体数据集,包含35454个训练图像对和4370个测试图像对,分辨率为960×540,该数据集提供稠密的视差图真实值。

  若视差或流端点误差 ∣ d e s t − d g t ∣ < 3 |d_{est}-d_{gt}|<3 destdgt<3px或 ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ d g t < 5 % \frac{{|d_{est}(x,y)-d_{gt}(x,y)|}}{d_{gt}}<5\% dgtdest(x,y)dgt(x,y)<5% 则视为正确估计

  • EPE: 1 N ∑ ( x , y ) ∈ N ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ \frac{1}{N}\sum_{(x,y)\in N}|d_{est}(x,y)-d_{gt}(x,y)| N1(x,y)Ndest(x,y)dgt(x,y) :全部区域的端点误差(EPE)
  • >1px: 1 N a l l ∑ ( x , y ) ∈ N a l l { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > 1 } \frac{1}{N_{all}} \sum_{(x, y)\in N_{all}}\{|d_{est}(x, y)-d_{gt}(x, y)|>1\} Nall1(x,y)Nall{dest(x,y)dgt(x,y)>1}:预测误差大于1px的像素的比例
  • >2px: 1 N a l l ∑ ( x , y ) ∈ N a l l { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > 2 } \frac{1}{N_{all}} \sum_{(x, y)\in N_{all}}\{|d_{est}(x, y)-d_{gt}(x, y)|>2\} Nall1(x,y)Nall{dest(x,y)dgt(x,y)>2}:预测误差大于2px的像素的比例
  • >3px: 1 N a l l ∑ ( x , y ) ∈ N a l l { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > 3 } \frac{1}{N_{all}} \sum_{(x, y)\in N_{all}}\{|d_{est}(x, y)-d_{gt}(x, y)|>3\} Nall1(x,y)Nall{dest(x,y)dgt(x,y)>3}:预测误差大于3px的像素的比例
  • D1:对于第一帧图像,预测正确的像素的比例

ETH3D数据集:

  ETH3D是室内和室外场景中的灰度立体数据集。其包含27个训练图像对与20个测试图像对,该数据集带有稀疏的视差真实值。视差范围在0-64之间。
评估指标

  • bad δ D \delta_{D} δD 1 N ∑ ( x , y ) ∈ N { ∣ d e s t ( x , y ) − d g t ( x , y ) ∣ > δ D } \frac{1}{N} \sum_{(x, y)\in N}\{|d_{est}(x, y)-d_{gt}(x, y)|>\delta_{D}\} N1(x,y)N{dest(x,y)dgt(x,y)>δD} :估计值与真实值相差大于 δ D \delta_{D} δD 的像素的比例, δ D \delta_{D} δD 可以取1.0、2.0
### 下载Sceneflow数据集部分内容 对于希望仅下载Sceneflow数据集中特定部分的需求,官方提供了灵活的选择方案[^1]。访问官方网站链接 https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html 可发现页面上不仅有完整的数据集提供下载选项,还针对不同需求细分了多个子集供研究者按需获取。 具体到FlyingThings3D这一分支下的光流部分数据集,网站允许用户单独选择并下载该类别内的文件。这意味着无需下载整个庞大的数据集合,而是能够聚焦于感兴趣的具体领域或实验所需的最小样本量来减少存储空间占用以及加快预处理流程的速度。 为了实现这部分内容的有效下载: - 浏览至上述网址后,在页面中定位到“FlyingThings3D”板块。 - 查看各细分类目下提供的资源列表,注意区分不同的分辨率版本(如half-resolution, quarter-resolution)以及其他特性标签。 - 对应所需的数据类型勾选相应的复选框完成定制化配置。 - 遵循提示操作直至启动下载过程即可获得指定范围内的数据片段用于后续的研究工作。 ```bash wget -r --no-parent -A "ft3d_flow*.zip" https://lmb.informatik.uni-freiburg.de/data/SceneFlow/FlyingThings3D/ unzip "*.zip" rm "*.zip" ``` 这段命令展示了通过`wget`工具自动化批量拉取符合模式匹配规则的压缩包,并解压释放出实际使用的图像序列文件结构的例子。当然这只是一个简化版示意脚本,真实场景里可能还需要考虑更多细节因素比如网络稳定性验证、错误重试机制等辅助措施确保顺利完成任务。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV科研随想录

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值