文章目录
1. 预备理论
函数插值当中我们只有几个离散的的插值节点及其函数值,在函数逼近里我们考虑的是有一个 f ( x ) , x ∈ [ a , b ] f(x),x\in[a,b] f(x),x∈[a,b] 已知,但是希望用一组简单的基函数 { ϕ 0 , . . . , ϕ n } \{\phi_0,...,\phi_n\} { ϕ0,...,ϕn} 逼近 f ( x ) f(x) f(x)。
首先定义加权内积为 ⟨ f , g ⟩ ρ = ∫ a b ρ ( x ) f ( x ) g ( x ) d x \langle f,g\rangle_\rho = \int_a^b \rho(x)f(x)g(x)dx ⟨f,g⟩ρ=∫abρ(x)f(x)g(x)dx,其中 ρ ( x ) ≥ 0 \rho(x)\ge0 ρ(x)≥0 为权函数。相应的可以导出范数定义为 ∥ f ∥ ρ = ⟨ f , f ⟩ ρ \Vert f\Vert_\rho = \sqrt{\langle f,f\rangle_\rho} ∥f∥ρ=⟨f,f⟩ρ。后面为了符号简洁都默认省略下标 ρ \rho ρ。
一般考虑最佳平方逼近问题,即 min s ∈ Φ ∥ f − s ∥ \min_{s\in\Phi} \Vert f-s\Vert mins∈Φ∥f−s∥,其中 Φ \Phi Φ 为某个函数空间,一般为代数多项式、三角多项式或有理多项式组。
2. 多项式逼近
2.1 总体框架
若 Φ = span { ϕ 0 , . . . , ϕ n } \Phi=\operatorname{span}\{\phi_0,...,\phi_n\} Φ=span{
ϕ0,...,ϕn}, { ϕ j , j = 0 , . . . , n } \{\phi_j,j=0,...,n\} {
ϕj,j=0,...,n} 为一组线性无关的的基函数,那么 ∀ s ∈ Φ \forall s\in\Phi ∀s∈Φ 可以表示为 s ( x ) = ∑ j = 0 n a j ϕ j ( x ) s(x) = \sum_{j=0}^n a_j\phi_j(x) s(x)=∑j=0najϕj(x),最佳平方逼近问题变为
min s ∈ Φ F ( a 0 , . . . , a n ) ≜ ∥ f − ∑ a j ϕ j ∥ 2 \min_{s\in\Phi} F(a_0,...,a_n) \triangleq \Vert f-\sum a_j\phi_j \Vert^2 s∈ΦminF(a0,...,an</