自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 Quantitative Trading with R(一):两个简单的策略

下面是两个使用R中的Quantstrat包进行策略构建的例子,都是对600550.ss、600192.ss、600152.ss、600644.ss、600885.ss、600151.ss六只股票进行投资。第一个是简单的动量策略;第二个是简单的趋势策略。虽然策略的表现都不太好,但是都有一个较为完整的框架,后面希望整理一下自己关于Quantstrat的学习笔记,刚接触相关方面的R语言小白,希望大家...

2020-02-01 23:44:58 600

原创 计量经济学之时间序列分析学习笔记(单位根检验、协整检验、单整阶数判断、ECM建模)——基于R(二)

一、生成时间序列data=matrix(0,1000,1)for(i in 1:1000){data[i+1]=data[i]+rnorm(1)}plot(data,type="l")nd=ts(data,start=c(2008,1,2),frequency=7)二、单位根检验1、法一library(urca)nl=ur.df(nd,type='none',selectlags='AIC'...

2018-07-06 17:24:34 12092 2

原创 计量经济学之回归分析学习笔记(均值回归、分位数回归、岭回归、Lasso回归、ENet回归)——基于R(一)

【前言】岭回归与Lasso回归,主要针对数据之间存在多重共线性的问题,其思路大体一致。多重共线性下,传统的最小二乘法所得到的参数估计过大,且不稳定。因此岭回归与Lasso回归,均通过引入惩罚函数解决此类问题。一、线性回归OLS估计二、岭回归估计三、Lasso回归估计...

2018-06-09 22:10:13 14889 3

原创 马科维茨投资组合理论(均方模型)学习笔记——基于Matlab(四)

这是本阶段最后一次学习马科维茨投资组合理论的软件实现。

2018-06-05 21:57:12 17533

原创 马科维茨投资组合理论(均方模型)学习笔记——基于Matlab(三)

最近在学习MATLAB中求解有效前沿的函数时,发现由于MATLAB移除了部分或全部函数,网上大部分的案例已经无法应用,例如较为常用的froncon全部被移除,portopt由于不再接受Conset参数,已经无法实现资产约束条件下的有效前沿求解,而目前大部分功能已经被Portfolio函数承担。portopt has been partially removed and will no longer...

2018-05-31 22:35:53 11301

原创 马科维茨投资组合理论(均方模型)学习笔记——基于Matlab(二)

马科维兹投资理论,即均方模型,是一种投资组合选择理论,其基本内容是:在不存在无风险借贷的假设下,基于资产组合个别股票收益率的均值和方差找出投资组合的有效前沿边界,投资者在有效前沿上配置资产组合时为一定条件下的最优组合。有效前沿为以μ、 σ为坐标的平面上的一支双曲线,开口向右,上面的各点一定是充分分散化而消除了非系统性风险的投资组合。

2018-05-29 22:23:34 12059

原创 马科维茨投资组合理论(均方模型)学习笔记——基于Matlab(一)

为什么在投资越分散(投资标的相关系数越小),则风险越小?分散投资是马科维茨投资组合理论的基本思路之一。如下,可以看到预期收益率和方差已知的情况下,相关系数越大,无论怎样进行资产配置,其方差均越小。%假设两种资产的预期收益率、方差已知function X=DeInvestment(sigma1,sigma2)sigma1=0.05;sigma2=0.1;%设置不同的相关系数for k=1:1...

2018-05-28 21:57:06 15619

原创 随机价格序列模拟学习笔记——基于Matlab(一)

在计院同学的建议下,使用CSDN的博客记录自己的学习笔记,希望能推动相互之间的交流。由于经济问题具有复杂性、不可重复性,因此,现今金融理论研究,尤其是对证券价格的研究,已经越来越依赖实验,而模拟作为量化研究重要的实验工具与手段,正在发挥越来越大的作用,相关的理论和研究也在不断完善。研究表明,多次的模拟,即使用非参数估计的方式,对证券等资产的价格预测也有很大的帮助。

2018-05-27 23:10:26 2578

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除