Quantitative Trading with R(一):两个简单的策略

本文介绍了使用R语言的Quantstrat包实现的两个简单量化交易策略:一是基于股票过去14天与30天收益率差的动量策略,二是基于MA50上穿或下穿MA200的趋势策略。尽管策略表现一般,但为初学者提供了一个量化交易策略的框架,期待进一步探讨和改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下面是两个使用R中的Quantstrat包进行策略构建的例子,都是对600550.ss、600192.ss、600152.ss、600644.ss、600885.ss、600151.ss六只股票进行投资。第一个是简单的动量策略;第二个是简单的趋势策略。

虽然策略的表现都不太好,但是都有一个较为完整的框架,后面希望整理一下自己关于Quantstrat的学习笔记,刚接触相关方面的R语言小白,希望大家多多批评,欢迎交流!(在这之前要先加载quantstrat包)

一、动量策略:将每个股票过去14天收益率和股票过去30天收益率之间的比较作为投资信号

#设置策略时间
initDate="2018-01-01"
from="2018-04-18"
to="2020-01-23"

#导入市场数据
c=c("600550.ss","600192.ss","600152.ss","600644.ss","600885.ss","600151.ss")
Z=c("A","B","C","D","E","F")
for(i in 1:length(c)){
  name=c[i]
  setSymbolLookup(STOCK=list(name=name,src='yahoo'))
  getSymbols("STOCK",from="2018-04-18",to="2020-01-23")
  assign(paste0("A",Z[i]),na.approx(STOCK))
}

#初始化货币单位、时区和市场
Sys.setenv(TZ="UTC")
currency("RMB")
symbols=c("AA","AB","AC","AD","AE","AF")
stock(symbols,currency="RMB",multiplier=1)

#初始化投资策略环境空间
tradeSize=100000000
initEq=tradeSize*length(symbols)
strategy.st=portfolio.st=account.st="maCross"
rm.strat(strategy.st)
.blotter=.strategy=new.env()
ls(envir=.strategy)

#初始化策略
initPortf(portfolio.st,symbols=symbols,initDate=initDate,currency="USD")
initAcct(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值