线性代数MIT 18.06 记录(十四)正交向量与子空间

四个子空间

在这里插入图片描述
行向量的秩是r,列向量的秩是r, d i m ( n u l l ( A ) ) = r dim(null(A)) = r dim(null(A))=r d i m ( n u l l ( A T ) ) = m − r dim(null(A^T) )= m - r dim(null(AT))=mr

而且 前两个正交,后两个相交

正交

意思就是向量夹角90°

如果判断?

使用点乘
在这里插入图片描述
如果 X T ∗ y = 0 X^T*y = 0 XTy=0,那么就说他们正交

毕达哥拉斯(勾股定理)

在这里插入图片描述

一个边长(向量)的平方,比如说向量 A = [ 1 , 2 , 3 ] T A = [1,2,3]^T A=[1,2,3]T,它的边长的平方就是: X T ∗ X X^T*X XTX (其实也就是举例零向量的距离。

举例

在这里插入图片描述

更一般化的定理

在这里插入图片描述

注意,最后两个是相同的 X T y 和 y T X X^Ty和y^TX XTyyTX是一摸一样的,所以,就退出了, x T y = 0 x^T y = 0 xTy=0

这就是从毕达哥拉斯同理推出的正交条件。
两个正交向量的点乘为零

零向量与任何向量都相交

正交子空间

定义

子空间S和子空间T正交意味着,所有S中的向量都和T中的向量相交

如果两个子空间在某条直线相遇,那么它肯定不是相交的

行向量正交于 零空间

A x = 0 Ax = 0 Ax=0
在这里插入图片描述
这样一看就非常明显了

注意:这里的维度非常重要,它们的秩加起来要得零
也就是补集的概念
在这里插入图片描述
NullSpace包含了所有垂直于行向量的向量

无解方程怎么解?

在这里插入图片描述

最最最最重要的的矩阵 A T A A^TA ATA

性质
  • 方阵
  • 对称
求解方法


A x = b Ax = b Ax=b
变成 A T A x = A T b A^TAx = A^Tb ATAx=ATb

A T A A^TA ATA可逆的充要条件,是A的列向量互相独立

在这里插入图片描述
这个公式为什么,下节课再说!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值