3 模式识别-基于阈值的聚类算法(近邻聚类法,最大最小距离聚类法)

本文深入探讨了聚类算法,包括近邻聚类法和最大最小距离算法,详细讲解了如何利用这两种算法进行自动样本分类,并提供了算法应用实例,强调了算法参数对分类效果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

武汉理工大学资源 郭志强

 

聚类算法:假如有一个样本集,但是里面的每个样本都没有类别标签,那么就要设计一种算法来进行自动样本分类,这就是聚类算法。

 

第一种聚类算法:近邻聚类法(已知聚类中心点,确定周围的点属于哪个                              类 )

助解举例:

 

距离阈值T变化对算法实际分类的影响

 

第二种聚类算法:最大最小距离算法(确定聚类中心点)

助解举例:

 

总结:可以先使用最大最小距离算法(唯一影响因素:θ权值大小)确定本次样本中的聚类中心点即确定分多少类,再使用近邻聚类法将剩余的点分别分到各个类中。

 

注意:欧式距离概念及计算方法,请访问本人博客《2 模式识别》

https://blog.csdn.net/weixin_41094315/article/details/102664659

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值