各种控制方法在抗干扰方面的区别

一、由来

*自适应控制 AdaptiveControl(AC):AC旨在处理由结构参数扰动引起的不良影响。  AC的思想是首先在线识别受控系统的模型参数,然后根据识别的模型参数调整控制参数以获得良好的性能。
AC在处理模型参数不确定性方面非常有效,在实际工程中得到了广泛的应用。  AC 方法的成功应用通常高度依赖于对时变模型参数的识别或估计规律的设计。 当这些关键参数难以在线识别或估计时,这些方法不可用。


*鲁棒控制 Robust Control(RC):RC 侧重于研究控制器对抗模型不确定性的能力,是现代控制理论的一个重要分支。  RC 的控制设计保守地考虑了模型不确定性的最坏情况。  RC的鲁棒性一般是通过牺牲其他特征点的瞬态性能作为代价获得。 因此,RC经常被批评为过于保守。

*滑模控制 Sliding Model Control (SMC):SMC 在抑制参数扰动和外部扰动的影响方面具有很好的能力。 然而,控制器的不连续切换容易引起机械系统的高频颤振。 虽然采用饱和函数法等一些修正方法可以有效地减少颤振问题,但牺牲了抗扰性能突出的优势。 这些缺点严重制约了SMC的应用。

*内模控制 Internal Model Control (IMC):自 1980 年代初以来,Garcia 和 Morari 提出的 IMC 原理已被用于减弱控制系统中外部干扰的影响。  IMC以其简单的概念和直观的设计理念,在控制理论和应用领域都受到了极大的关注。 但是,IMC 通常只是用于线性系统。 此外,由于需要计算高维传递函数矩阵的逆矩阵,因此,高维系统的 IMC 算法的实现相当复杂

        上述控制方法的动机是通过反馈控制而不是前馈补偿控制来抑制干扰。 这些控制方法通常通过基于测量输出与其设定点之间的跟踪误差的反馈调节来实现干扰抑制的目标。 因此,设计的控制器在存在强扰动的情况下反应不够直接和足够快,尽管它们最终可以通过反馈调节以相对较慢的方式抑制扰动。 为此,这些控制方法通常被认为是被动抗干扰控制 passive antidisturbance control(PADC)方法

        为了克服PADC方法在处理干扰方面的局限性,人们提出了所谓的主动抗干扰控制active antidisturbance control (AADC)方法。 一般来说,AADC 背后的想法是通过基于干扰测量或估计的前馈补偿控制设计来直接抵消干扰。传统的前馈控制 feedforward control (FC) 被称为最早的 AADC 方法。

        在FC框架下,首先采用传感器测量扰动; 其次,建立扰动通道模型; 最后,设计了一个前馈控制器,它采用了扰动测量以及过程和扰动通道的模型来抵消扰动。  FC是最直接、最主动的扰动衰减方法之一。但是FC的应用受限于以下原因。在实际的工业过程中,扰动是不可测量的、难以测量的,或者是可测量的但传感器过于昂贵。 例如,磨矿分级过程中给料矿石的硬度是无法测量的。

        为了利用 FC 在抗扰方面的优势并克服上述缺点,对扰动估计技术(也称为软扰动测量)的研究得到了更多的关注。 扰动观测器 Disturbance observer(DO)是最有效、最流行的扰动估计技术之一。 基于扰动观测器的控制 Disturbance observer-based control(DOBC)在控制理论和控制工程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值