解:一阶齐次或非齐次线性微分方程-详细推导

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
中点法是一种常用的数值微分方程的方法,其稳定性区间可以通过推导得到。 考虑使用中点法求一阶微分方程: $$\frac{dy}{dx}=f(x,y)$$ 其中点法的迭代公式为: $$y_{n+1}=y_n+hf(x_n+\frac{h}{2},y_n+\frac{h}{2}f(x_n,y_n))$$ 其中,$h$为步长,$x_n$和$y_n$为第$n$步的$x$和$y$的近似值。 现在考虑对该迭代公式进行线性稳定性分析。假设方程的为$y(x)$,将其近似为: $$y_n=y(x_n)+\epsilon_n$$ 其中,$\epsilon_n$为$n$步的误差。将其代入迭代公式,得到: $$\epsilon_{n+1}=\frac{h}{2}(f_x+f_yf)h\epsilon_n$$ 其中,$f_x$和$f_y$分别为$f(x,y)$对$x$和$y$的一阶偏导数。假设$\lambda$为特征值,则有: $$\epsilon_{n+1}=\left(1+\frac{h}{2}\lambda+\frac{1}{2}(\frac{h}{2}\lambda)^2+\cdots\right)\epsilon_n$$ 使用等比数列求和公式,得到: $$\epsilon_{n+1}=\left(1+\frac{h}{2}\lambda+\frac{1}{2}(\frac{h}{2}\lambda)^2+\cdots+\frac{1}{2^n}(\frac{h}{2}\lambda)^n\right)\epsilon_0$$ 当$|\frac{h}{2}\lambda|<1$时,上式右边的括号内的项的和是有限的,因此误差$\epsilon_n$会逐渐减小,中点法是稳定的。当$|\frac{h}{2}\lambda|\geq 1$时,上式右边的括号内的项的和是无限的,因此误差$\epsilon_n$会发散,中点法是不稳定的。 因此,中点法的稳定性区间为: $$|\frac{h}{2}\lambda|<1$$ 或者等价地, $$-\frac{2}{h}<\operatorname{Re}(\lambda)<\frac{2}{h}$$ 其中,$\operatorname{Re}(\lambda)$为特征值的实部。这就是中点法的稳定性区间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值