数学分析复习:初等不等式
本篇文章适合个人复习翻阅,不建议新手入门使用
1.伯努利(Bernoulli)不等式
伯努利不等式:设 h > − 1 , n ∈ N + h>-1,n\in\mathbb{N}^+ h>−1,n∈N+,则
( 1 + h ) n ≥ 1 + n h (1+h)^n\geq 1+nh (1+h)n≥1+nh取等号当且仅当n=1或h=0
推论:设 A > 0 , A + B > 0 , n ∈ N A>0,A+B>0,n\in\mathbb{N} A>0,A+B>0,n∈N,则 ( A + B ) n ≥ A n + n A n − 1 B (A+B)^n\geq A^n+nA^{n-1}B (A+B)n≥An+nAn−1B取等号当且仅当n=1或B=0
2.平均值不等式
平均值不等式:设 n n n 个非负实数 a 1 , … , a n a_1,\dots,a_n a1,…,an,则有
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n \dfrac{a_1+a_2+\cdots+a_n}{n}\geq \sqrt[n]{a_1a_2\cdots a_n} na1+a2+⋯+an≥