数学分析复习:初等不等式

本文介绍了数学分析中的伯努利不等式和平均值不等式的概念,提供了两种证明方法:归纳法和向前-向后法,并提到了参考书籍《数学分析习题课讲义》。适合个人复习,非新手入门内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学分析复习:初等不等式

本篇文章适合个人复习翻阅,不建议新手入门使用

1.伯努利(Bernoulli)不等式

伯努利不等式:设 h > − 1 , n ∈ N + h>-1,n\in\mathbb{N}^+ h>1,nN+,则
( 1 + h ) n ≥ 1 + n h (1+h)^n\geq 1+nh (1+h)n1+nh取等号当且仅当n=1或h=0

推论:设 A > 0 , A + B > 0 , n ∈ N A>0,A+B>0,n\in\mathbb{N} A>0,A+B>0,nN,则 ( A + B ) n ≥ A n + n A n − 1 B (A+B)^n\geq A^n+nA^{n-1}B (A+B)nAn+nAn1B取等号当且仅当n=1或B=0

2.平均值不等式

平均值不等式:设 n n n 个非负实数 a 1 , … , a n a_1,\dots,a_n a1,,an,则有
a 1 + a 2 + ⋯ + a n n ≥ a 1 a 2 ⋯ a n n \dfrac{a_1+a_2+\cdots+a_n}{n}\geq \sqrt[n]{a_1a_2\cdots a_n} na1+a2++an

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值