ADNI数据_PET——官方预处理

这篇博客详细介绍了ADNI项目的PET数据预处理过程,包括原始图像的帧结构、官方提供的四种处理类型以及处理的目的。主要步骤涉及帧的配准、合成为4-D文件、标准化空间坐标和强度归一化,旨在减少患者运动影响并便于不同扫描仪模型间的比较。此外,还进行了平滑处理以消除分辨率差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插asdasdmsa

The Above is the PET description of three ANDI datset.

:原始image是six 5min frames 30-60 min post injection,是指整个imge包含6个frames?每个frame成像时间是5mins吗?

官方提供了four types of processed PET image data in the database.(也是我们直接用于提取和分析的图像)

  1. 一个subject一共6个frames,后5个co-registered到第一个frame,The base frame image and the five co-registered frames (or all co-registered frames for the quantitative studies) are recombined into a co-registered dynamic image set. 就是6个frames合成一个4-D文件,单个image-size是:128/128/63,voxel-size:2mm2/mm/2mm, and remain in the same spatial orientation as the original PET image data. This is called native space. (只针对protocal1和3࿰

### 关于 ADNI-LONI 数据集的下载与使用 #### 数据集概述 ADNI(Alzheimer's Disease Neuroimaging Initiative)是一个专注于阿尔茨海默病及其前期阶段——轻度认知障碍(MCI)患者的大型公开数据库[^1]。它提供了多种类型的医学数据,包括但不限于磁共振成像(MRI)、正电子发射断层扫描(PET)、遗传学信息、认知测试结果以及脑脊液和血液中的生物标志物。 这些数据来源于不同组别的参与者:确诊为阿尔茨海默病的患者、患有轻度认知障碍的个体以及健康的老年人对照组。通过访问其官方网站 http://adni.loni.usc.edu/ ,可以获取详细的资源说明文档和技术支持。 --- #### 如何下载 ADNI-LONI 数据集 为了合法合规地下载并利用 ADNI数据,需遵循以下流程: 1. **注册账户** 需要在官网完成用户注册过程。这一步骤是为了确保每位使用者都了解并同意有关隐私保护政策及数据使用的条款条件。 2. **申请权限** 注册成功后,还需提交一份简短的数据请求表单来阐明具体科研目的。只有经过审核批准之后才能正式解锁目标文件夹内的资料链接。 3. **浏览可用数据集合** 登录系统后即可查看所有开放共享的内容清单。可以根据实验需求筛选特定模态或者主题下的子集项。 4. **实际操作指南** 官方还准备了一系列教程视频与书面手册帮助新加入成员快速上手整个检索-预处理链条上的各个环节。 --- #### 技术文档和支持材料 除了原始影像档案本身之外,平台还会附带相应的元数据描述字段解释表格;同时也有专门面向开发者的技术白皮书介绍API接口调用方法等内容。对于希望采用深度学习框架实现自动化分析任务的研究人员来说,可能也会感兴趣参考其他开源项目案例作为辅助工具链的一部分。例如,在PyTorch环境下实现了多版本U-net模型家族算法库就非常适合用于此类医疗图像分割场景的应用开发工作[^3]。 ```python from unet.models import UNet model = UNet(in_channels=1, out_channels=1) print(model) ``` 上述代码片段展示了如何实例化一个基础型UNet网络架构对象以便后续训练配置调整之用。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值