在航天器轨道转移的研究中,霍曼转移和双椭圆霍曼转移是两种常见的轨道转移方式。本文将通过对比分析这两种转移方式的求解过程和结果,探讨它们在不同情况下的应用和优劣。
首先,我们来看问题一,即从地心圆轨道半径7000 km转移到半径105000 km的轨道的霍曼转移,求Δv需求。
问题一:霍曼转移的求解过程
已知:
- 初始轨道半径 r 1 = 7000 km r_1 = 7000 \text{ km} r1=7000 km
- 目标轨道半径 r 2 = 105000 km r_2 = 105000 \text{ km} r2=105000 km
- 地球的标准引力参数 μ = 398600 km 3 / s 2 \mu = 398600 \text{ km}^3/\text{s}^2 μ=398600 km3/s2
转移轨道的半长轴:
a
t
=
r
1
+
r
2
2
=
7000
+
105000
2
=
56000
km
a_t = \frac{r_1 + r_2}{2} = \frac{7000 + 105000}{2} = 56000 \text{ km}
at=2r1+r2=27000+105000=56000 km
初始圆轨道的速度:
v
1
=
μ
r
1
=
398600
7000
≈
7.5460
km/s
v_1 = \sqrt{\frac{\mu}{r_1}} = \sqrt{\frac{398600}{7000}} \approx 7.5460 \text{ km/s}
v1=r1μ=7000398600≈7.5460 km/s
转移轨道在近地点的速度:
v
p
=
2
μ
r
1
−
μ
a
t
=
2
×
398600
7000
−
398600
56000
=
113.8857
−
7.1179
=
106.7678
≈
10.337
km/s
v_p = \sqrt{\frac{2\mu}{r_1} - \frac{\mu}{a_t}} = \sqrt{\frac{2 \times 398600}{7000} - \frac{398600}{56000}} = \sqrt{113.8857 - 7.1179} = \sqrt{106.7678} \approx 10.337 \text{ km/s}
vp=r12μ−atμ=70002×398600−56000398600=113.8857−7.1179=106.7678≈10.337 km/s
首次机动所需的
Δ
v
1
\Delta v_1
Δv1:
Δ
v
1
=
v
p
−
v
1
=
10.337
−
7.5460
=
2.791
km/s
\Delta v_1 = v_p - v_1 = 10.337 - 7.5460 = 2.791 \text{ km/s}
Δv1=vp−v1=10.337−7.5460=2.791 km/s
转移轨道在远地点的速度:
v
a
=
2
μ
r
2
−
μ
a
t
=
2
×
398600
105000
−
398600
56000
=
7.6038
−
7.1179
=
0.4859
≈
0.697
km/s
v_a = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_t}} = \sqrt{\frac{2 \times 398600}{105000} - \frac{398600}{56000}} = \sqrt{7.6038 - 7.1179} = \sqrt{0.4859} \approx 0.697 \text{ km/s}
va=r22μ−atμ=1050002×398600−56000398600=7.6038−7.1179=0.4859≈0.697 km/s
目标圆轨道的速度:
v
2
=
μ
r
2
=
398600
105000
≈
1.949
km/s
v_2 = \sqrt{\frac{\mu}{r_2}} = \sqrt{\frac{398600}{105000}} \approx 1.949 \text{ km/s}
v2=r2μ=105000398600≈1.949 km/s
第二次机动所需的
Δ
v
2
\Delta v_2
Δv2:
Δ
v
2
=
v
2
−
v
a
=
1.949
−
0.697
=
1.252
km/s
\Delta v_2 = v_2 - v_a = 1.949 - 0.697 = 1.252 \text{ km/s}
Δv2=v2−va=1.949−0.697=1.252 km/s
总Δv需求:
Δ
v
t
o
t
a
l
=
Δ
v
1
+
Δ
v
2
=
2.791
+
1.252
=
4.043
km/s
\Delta v_{total} = \Delta v_1 + \Delta v_2 = 2.791 + 1.252 = 4.043 \text{ km/s}
Δvtotal=Δv1+Δv2=2.791+1.252=4.043 km/s
结果:
总Δv需求为
4.043
km/s
4.043 \text{ km/s}
4.043 km/s。
接下来,我们来看问题二,即求双椭圆霍曼转移的总Δv需求,从地心圆轨道半径7000 km转移到半径105000 km的圆轨道。设第一个椭圆的远地点为210000 km。
问题二:双椭圆霍曼转移的求解过程
已知:
- 初始轨道半径 r 1 = 7000 km r_1 = 7000 \text{ km} r1=7000 km
- 第一个椭圆的远地点 r 2 = 210000 km r_2 = 210000 \text{ km} r2=210000 km
- 目标轨道半径 r 3 = 105000 km r_3 = 105000 \text{ km} r3=105000 km
- 地球的标准引力参数 μ = 398600 km 3 / s 2 \mu = 398600 \text{ km}^3/\text{s}^2 μ=398600 km3/s2
双椭圆霍曼转移过程包括三个机动:
- 从初始圆轨道转移至第一个椭圆轨道的机动。
- 在第一个椭圆的远地点进行机动,转移至第二个椭圆轨道。
- 在第二个椭圆的近地点进行机动,转移至目标圆轨道。
计算每个机动所需的 Δ v \Delta v Δv,然后求和得到总 Δ v \Delta v Δv需求。
第一阶段:从初始圆轨道到第一个椭圆轨道
初始圆轨道的速度:
v
1
=
μ
r
1
=
398600
7000
≈
7.546
km/s
v_1 = \sqrt{\frac{\mu}{r_1}} = \sqrt{\frac{398600}{7000}} \approx 7.546 \text{ km/s}
v1=r1μ=7000398600≈7.546 km/s
第一个椭圆轨道的半长轴:
a
1
=
r
1
+
r
2
2
=
7000
+
210000
2
=
108500
km
a_1 = \frac{r_1 + r_2}{2} = \frac{7000 + 210000}{2} = 108500 \text{ km}
a1=2r1+r2=27000+210000=108500 km
第一个椭圆轨道在近地点的速度:
v
p
1
=
2
μ
r
1
−
μ
a
1
=
2
×
398600
7000
−
398600
108500
≈
113.8857
−
3.6738
=
110.2119
≈
10.497
km/s
v_{p1} = \sqrt{\frac{2\mu}{r_1} - \frac{\mu}{a_1}} = \sqrt{\frac{2 \times 398600}{7000} - \frac{398600}{108500}} \approx \sqrt{113.8857 - 3.6738} = \sqrt{110.2119} \approx 10.497 \text{ km/s}
vp1=r12μ−a1μ=70002×398600−108500398600≈113.8857−3.6738=110.2119≈10.497 km/s
第一次机动所需的速度增量:
Δ
v
1
=
v
p
1
−
v
1
=
10.497
−
7.546
≈
2.951
km/s
\Delta v_1 = v_{p1} - v_1 = 10.497 - 7.546 \approx 2.951 \text{ km/s}
Δv1=vp1−v1=10.497−7.546≈2.951 km/s
第二阶段:从第一个椭圆轨道转移至第二个椭圆轨道
第一个椭圆轨道在远地点的速度:
v
a
1
=
2
μ
r
2
−
μ
a
1
=
2
×
398600
210000
−
398600
108500
≈
3.7962
−
3.6738
=
0.1224
≈
0.350
km/s
v_{a1} = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_1}} = \sqrt{\frac{2 \times 398600}{210000} - \frac{398600}{108500}} \approx \sqrt{3.7962 - 3.6738} = \sqrt{0.1224} \approx 0.350 \text{ km/s}
va1=r22μ−a1μ=2100002×398600−108500398600≈3.7962−3.6738=0.1224≈0.350 km/s
第二个椭圆轨道的半长轴:
a
2
=
r
2
+
r
3
2
=
210000
+
105000
2
=
157500
km
a_2 = \frac{r_2 + r_3}{2} = \frac{210000 + 105000}{2} = 157500 \text{ km}
a2=2r2+r3=2210000+105000=157500 km
第二个椭圆轨道在远地点的速度(即在
r
2
r_2
r2):
v
a
2
=
2
μ
r
2
−
μ
a
2
=
2
×
398600
210000
−
398600
157500
≈
3.7962
−
2.5359
=
1.2603
≈
1.122
km/s
v_{a2} = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_2}} = \sqrt{\frac{2 \times 398600}{210000} - \frac{398600}{157500}} \approx \sqrt{3.7962 - 2.5359} = \sqrt{1.2603} \approx 1.122 \text{ km/s}
va2=r22μ−a2μ=2100002×398600−157500398600≈3.7962−2.5359=1.2603≈1.122 km/s
第二次机动所需的速度增量:
Δ
v
2
=
v
a
2
−
v
a
1
=
1.122
−
0.350
≈
0.772
km/s
\Delta v_2 = v_{a2} - v_{a1} = 1.122 - 0.350 \approx 0.772 \text{ km/s}
Δv2=va2−va1=1.122−0.350≈0.772 km/s
第三阶段:从第二个椭圆轨道转移至目标圆轨道
第二个椭圆轨道在近地点的速度:
v
p
2
=
2
μ
r
3
−
μ
a
2
=
2
×
398600
105000
−
398600
157500
≈
7.6038
−
2.5359
=
5.0679
≈
2.251
km/s
v_{p2} = \sqrt{\frac{2\mu}{r_3} - \frac{\mu}{a_2}} = \sqrt{\frac{2 \times 398600}{105000} - \frac{398600}{157500}} \approx \sqrt{7.6038 - 2.5359} = \sqrt{5.0679} \approx 2.251 \text{ km/s}
vp2=r32μ−a2μ=1050002×398600−157500398600≈7.6038−2.5359=5.0679≈2.251 km/s
目标圆轨道的速度:
v
3
=
μ
r
3
=
398600
105000
≈
1.949
km/s
v_3 = \sqrt{\frac{\mu}{r_3}} = \sqrt{\frac{398600}{105000}} \approx 1.949 \text{ km/s}
v3=r3μ=105000398600≈1.949 km/s
第三次机动所需的速度增量:
Δ
v
3
=
v
3
−
v
p
2
=
1.949
−
2.251
≈
−
0.302
km/s
\Delta v_3 = v_3 - v_{p2} = 1.949 - 2.251 \approx -0.302 \text{ km/s}
Δv3=v3−vp2=1.949−2.251≈−0.302 km/s
由于
Δ
v
3
\Delta v_3
Δv3 为负值,表示在此阶段需要减速,因此取绝对值:
Δ
v
3
=
0.302
km/s
\Delta v_3 = 0.302 \text{ km/s}
Δv3=0.302 km/s
总Δv需求:
Δ
v
总
=
Δ
v
1
+
Δ
v
2
+
Δ
v
3
=
2.951
+
0.772
+
0.302
=
4.025
km/s
\Delta v_{\text{总}} = \Delta v_1 + \Delta v_2 + \Delta v_3 = 2.951 + 0.772 + 0.302 = 4.025 \text{ km/s}
Δv总=Δv1+Δv2+Δv3=2.951+0.772+0.302=4.025 km/s
对比分析
通过对比两个问题的求解过程和结果,我们可以发现:
-
霍曼转移:霍曼转移是一种简单而高效的轨道转移方式,适用于两圆轨道之间的转移。其总Δv需求为 4.043 km/s 4.043 \text{ km/s} 4.043 km/s,计算过程相对简单,适合于较小的轨道半径变化。
-
双椭圆霍曼转移:双椭圆霍曼转移则适用于较大半径变化的轨道转移。尽管其计算过程较为复杂,需要进行三次机动,但其总Δv需求为 4.025 km/s 4.025 \text{ km/s} 4.025 km/s,略低于霍曼转移。