双椭圆霍曼转移与单霍曼转移的Δv计算示例

在航天器轨道转移的研究中,霍曼转移和双椭圆霍曼转移是两种常见的轨道转移方式。本文将通过对比分析这两种转移方式的求解过程和结果,探讨它们在不同情况下的应用和优劣。

首先,我们来看问题一,即从地心圆轨道半径7000 km转移到半径105000 km的轨道的霍曼转移,求Δv需求。

问题一:霍曼转移的求解过程

已知:

  • 初始轨道半径 r 1 = 7000  km r_1 = 7000 \text{ km} r1=7000 km
  • 目标轨道半径 r 2 = 105000  km r_2 = 105000 \text{ km} r2=105000 km
  • 地球的标准引力参数 μ = 398600  km 3 / s 2 \mu = 398600 \text{ km}^3/\text{s}^2 μ=398600 km3/s2

转移轨道的半长轴:
a t = r 1 + r 2 2 = 7000 + 105000 2 = 56000  km a_t = \frac{r_1 + r_2}{2} = \frac{7000 + 105000}{2} = 56000 \text{ km} at=2r1+r2=27000+105000=56000 km

初始圆轨道的速度:
v 1 = μ r 1 = 398600 7000 ≈ 7.5460  km/s v_1 = \sqrt{\frac{\mu}{r_1}} = \sqrt{\frac{398600}{7000}} \approx 7.5460 \text{ km/s} v1=r1μ =7000398600 7.5460 km/s

转移轨道在近地点的速度:
v p = 2 μ r 1 − μ a t = 2 × 398600 7000 − 398600 56000 = 113.8857 − 7.1179 = 106.7678 ≈ 10.337  km/s v_p = \sqrt{\frac{2\mu}{r_1} - \frac{\mu}{a_t}} = \sqrt{\frac{2 \times 398600}{7000} - \frac{398600}{56000}} = \sqrt{113.8857 - 7.1179} = \sqrt{106.7678} \approx 10.337 \text{ km/s} vp=r12μatμ =70002×39860056000398600 =113.88577.1179 =106.7678 10.337 km/s

首次机动所需的 Δ v 1 \Delta v_1 Δv1
Δ v 1 = v p − v 1 = 10.337 − 7.5460 = 2.791  km/s \Delta v_1 = v_p - v_1 = 10.337 - 7.5460 = 2.791 \text{ km/s} Δv1=vpv1=10.3377.5460=2.791 km/s

转移轨道在远地点的速度:
v a = 2 μ r 2 − μ a t = 2 × 398600 105000 − 398600 56000 = 7.6038 − 7.1179 = 0.4859 ≈ 0.697  km/s v_a = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_t}} = \sqrt{\frac{2 \times 398600}{105000} - \frac{398600}{56000}} = \sqrt{7.6038 - 7.1179} = \sqrt{0.4859} \approx 0.697 \text{ km/s} va=r22μatμ =1050002×39860056000398600 =7.60387.1179 =0.4859 0.697 km/s

目标圆轨道的速度:
v 2 = μ r 2 = 398600 105000 ≈ 1.949  km/s v_2 = \sqrt{\frac{\mu}{r_2}} = \sqrt{\frac{398600}{105000}} \approx 1.949 \text{ km/s} v2=r2μ =105000398600 1.949 km/s

第二次机动所需的 Δ v 2 \Delta v_2 Δv2
Δ v 2 = v 2 − v a = 1.949 − 0.697 = 1.252  km/s \Delta v_2 = v_2 - v_a = 1.949 - 0.697 = 1.252 \text{ km/s} Δv2=v2va=1.9490.697=1.252 km/s

总Δv需求:
Δ v t o t a l = Δ v 1 + Δ v 2 = 2.791 + 1.252 = 4.043  km/s \Delta v_{total} = \Delta v_1 + \Delta v_2 = 2.791 + 1.252 = 4.043 \text{ km/s} Δvtotal=Δv1+Δv2=2.791+1.252=4.043 km/s

结果:
总Δv需求为 4.043  km/s 4.043 \text{ km/s} 4.043 km/s

接下来,我们来看问题二,即求双椭圆霍曼转移的总Δv需求,从地心圆轨道半径7000 km转移到半径105000 km的圆轨道。设第一个椭圆的远地点为210000 km。

问题二:双椭圆霍曼转移的求解过程

已知:

  • 初始轨道半径 r 1 = 7000  km r_1 = 7000 \text{ km} r1=7000 km
  • 第一个椭圆的远地点 r 2 = 210000  km r_2 = 210000 \text{ km} r2=210000 km
  • 目标轨道半径 r 3 = 105000  km r_3 = 105000 \text{ km} r3=105000 km
  • 地球的标准引力参数 μ = 398600  km 3 / s 2 \mu = 398600 \text{ km}^3/\text{s}^2 μ=398600 km3/s2

双椭圆霍曼转移过程包括三个机动:

  1. 从初始圆轨道转移至第一个椭圆轨道的机动。
  2. 在第一个椭圆的远地点进行机动,转移至第二个椭圆轨道。
  3. 在第二个椭圆的近地点进行机动,转移至目标圆轨道。

计算每个机动所需的 Δ v \Delta v Δv,然后求和得到总 Δ v \Delta v Δv需求。

第一阶段:从初始圆轨道到第一个椭圆轨道

初始圆轨道的速度:
v 1 = μ r 1 = 398600 7000 ≈ 7.546  km/s v_1 = \sqrt{\frac{\mu}{r_1}} = \sqrt{\frac{398600}{7000}} \approx 7.546 \text{ km/s} v1=r1μ =7000398600 7.546 km/s

第一个椭圆轨道的半长轴:
a 1 = r 1 + r 2 2 = 7000 + 210000 2 = 108500  km a_1 = \frac{r_1 + r_2}{2} = \frac{7000 + 210000}{2} = 108500 \text{ km} a1=2r1+r2=27000+210000=108500 km

第一个椭圆轨道在近地点的速度:
v p 1 = 2 μ r 1 − μ a 1 = 2 × 398600 7000 − 398600 108500 ≈ 113.8857 − 3.6738 = 110.2119 ≈ 10.497  km/s v_{p1} = \sqrt{\frac{2\mu}{r_1} - \frac{\mu}{a_1}} = \sqrt{\frac{2 \times 398600}{7000} - \frac{398600}{108500}} \approx \sqrt{113.8857 - 3.6738} = \sqrt{110.2119} \approx 10.497 \text{ km/s} vp1=r12μa1μ =70002×398600108500398600 113.88573.6738 =110.2119 10.497 km/s

第一次机动所需的速度增量:
Δ v 1 = v p 1 − v 1 = 10.497 − 7.546 ≈ 2.951  km/s \Delta v_1 = v_{p1} - v_1 = 10.497 - 7.546 \approx 2.951 \text{ km/s} Δv1=vp1v1=10.4977.5462.951 km/s

第二阶段:从第一个椭圆轨道转移至第二个椭圆轨道

第一个椭圆轨道在远地点的速度:
v a 1 = 2 μ r 2 − μ a 1 = 2 × 398600 210000 − 398600 108500 ≈ 3.7962 − 3.6738 = 0.1224 ≈ 0.350  km/s v_{a1} = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_1}} = \sqrt{\frac{2 \times 398600}{210000} - \frac{398600}{108500}} \approx \sqrt{3.7962 - 3.6738} = \sqrt{0.1224} \approx 0.350 \text{ km/s} va1=r22μa1μ =2100002×398600108500398600 3.79623.6738 =0.1224 0.350 km/s

第二个椭圆轨道的半长轴:
a 2 = r 2 + r 3 2 = 210000 + 105000 2 = 157500  km a_2 = \frac{r_2 + r_3}{2} = \frac{210000 + 105000}{2} = 157500 \text{ km} a2=2r2+r3=2210000+105000=157500 km

第二个椭圆轨道在远地点的速度(即在 r 2 r_2 r2):
v a 2 = 2 μ r 2 − μ a 2 = 2 × 398600 210000 − 398600 157500 ≈ 3.7962 − 2.5359 = 1.2603 ≈ 1.122  km/s v_{a2} = \sqrt{\frac{2\mu}{r_2} - \frac{\mu}{a_2}} = \sqrt{\frac{2 \times 398600}{210000} - \frac{398600}{157500}} \approx \sqrt{3.7962 - 2.5359} = \sqrt{1.2603} \approx 1.122 \text{ km/s} va2=r22μa2μ =2100002×398600157500398600 3.79622.5359 =1.2603 1.122 km/s

第二次机动所需的速度增量:
Δ v 2 = v a 2 − v a 1 = 1.122 − 0.350 ≈ 0.772  km/s \Delta v_2 = v_{a2} - v_{a1} = 1.122 - 0.350 \approx 0.772 \text{ km/s} Δv2=va2va1=1.1220.3500.772 km/s

第三阶段:从第二个椭圆轨道转移至目标圆轨道

第二个椭圆轨道在近地点的速度:
v p 2 = 2 μ r 3 − μ a 2 = 2 × 398600 105000 − 398600 157500 ≈ 7.6038 − 2.5359 = 5.0679 ≈ 2.251  km/s v_{p2} = \sqrt{\frac{2\mu}{r_3} - \frac{\mu}{a_2}} = \sqrt{\frac{2 \times 398600}{105000} - \frac{398600}{157500}} \approx \sqrt{7.6038 - 2.5359} = \sqrt{5.0679} \approx 2.251 \text{ km/s} vp2=r32μa2μ =1050002×398600157500398600 7.60382.5359 =5.0679 2.251 km/s

目标圆轨道的速度:
v 3 = μ r 3 = 398600 105000 ≈ 1.949  km/s v_3 = \sqrt{\frac{\mu}{r_3}} = \sqrt{\frac{398600}{105000}} \approx 1.949 \text{ km/s} v3=r3μ =105000398600 1.949 km/s

第三次机动所需的速度增量:
Δ v 3 = v 3 − v p 2 = 1.949 − 2.251 ≈ − 0.302  km/s \Delta v_3 = v_3 - v_{p2} = 1.949 - 2.251 \approx -0.302 \text{ km/s} Δv3=v3vp2=1.9492.2510.302 km/s

由于 Δ v 3 \Delta v_3 Δv3 为负值,表示在此阶段需要减速,因此取绝对值:
Δ v 3 = 0.302  km/s \Delta v_3 = 0.302 \text{ km/s} Δv3=0.302 km/s

总Δv需求:
Δ v 总 = Δ v 1 + Δ v 2 + Δ v 3 = 2.951 + 0.772 + 0.302 = 4.025  km/s \Delta v_{\text{总}} = \Delta v_1 + \Delta v_2 + \Delta v_3 = 2.951 + 0.772 + 0.302 = 4.025 \text{ km/s} Δv=Δv1+Δv2+Δv3=2.951+0.772+0.302=4.025 km/s

对比分析

通过对比两个问题的求解过程和结果,我们可以发现:

  1. 霍曼转移:霍曼转移是一种简单而高效的轨道转移方式,适用于两圆轨道之间的转移。其总Δv需求为 4.043  km/s 4.043 \text{ km/s} 4.043 km/s,计算过程相对简单,适合于较小的轨道半径变化。

  2. 双椭圆霍曼转移:双椭圆霍曼转移则适用于较大半径变化的轨道转移。尽管其计算过程较为复杂,需要进行三次机动,但其总Δv需求为 4.025  km/s 4.025 \text{ km/s} 4.025 km/s,略低于霍曼转移。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

一块去征服星辰大海吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值