工程数学速记手册(上)

工程数学速记手册(上)

第一部分:微积分

一元微积分

极限与连续性
定义与基本性质

极限是分析函数在某一点附近行为的基本工具。设函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 的某个去心邻域内有定义,如果存在实数 L L L,使得对于任意的 ϵ > 0 \epsilon > 0 ϵ>0,存在 δ > 0 \delta > 0 δ>0,当 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ 时,有
∣ f ( x ) − L ∣ < ϵ |f(x) - L| < \epsilon f(x)L<ϵ
则称
lim ⁡ x → a f ( x ) = L \lim_{x \to a} f(x) = L xalimf(x)=L
即函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 处的极限为 L L L

连续性是描述函数在某一点没有间断的性质。函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 处连续的充分必要条件是:

  1. 函数在点 a a a 处有定义,即 f ( a ) f(a) f(a) 存在
  2. 极限存在,即 lim ⁡ x → a f ( x ) \lim_{x \to a} f(x) limxaf(x) 存在
  3. 极限值等于函数值,即
    lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) xalimf(x)=f(a)
极限计算方法

极限的计算可以通过多种方法实现,常用的方法包括:

  1. 直接代入法:适用于函数在点 a a a 处连续的情况,即
    lim ⁡ x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) xalimf(x)=f(a)
    例如:
    lim ⁡ x → 2 ( 3 x + 1 ) = 3 × 2 + 1 = 7 \lim_{x \to 2} (3x + 1) = 3 \times 2 + 1 = 7 x2lim(3x+1)=3×2+1=7

  2. 因式分解法:用于处理 0 0 \frac{0}{0} 00 型未定式,通过因式分解消去公共因子后再求极限。
    例如:
    lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 1 ) x − 1 = lim ⁡ x → 1 ( x + 1 ) = 2 \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2 x1limx1x21=x1limx1(x1)(x+1)=x1lim(x+1)=2

  3. 有理化法:适用于含有根号的极限,通过有理化分子或分母来消除根号。
    例如:
    lim ⁡ x → 0 x + 1 − 1 x = lim ⁡ x → 0 ( x + 1 − 1 ) ( x + 1 + 1 ) x ( x + 1 + 1 ) = lim ⁡ x → 0 x x ( x + 1 + 1 ) = 1 2 \lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt{x + 1} - 1)(\sqrt{x + 1} + 1)}{x(\sqrt{x + 1} + 1)} = \lim_{x \to 0} \frac{x}{x(\sqrt{x + 1} + 1)} = \frac{1}{2} x0limxx+1 1=x0limx(x+1 +1)(x+1 1)(x+1 +1)=x0limx(x+1 +1)x=21

  4. 洛必达法则:当极限形式为 0 0 \frac{0}{0} 00 ∞ ∞ \frac{\infty}{\infty} 时,可以对分子和分母分别求导后再求极限。
    例如:
    lim ⁡ x → 0 sin ⁡ x x = lim ⁡ x → 0 cos ⁡ x 1 = 1 \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1 x0limxsinx=x0lim1cosx=1

  5. 夹逼定理:当函数 f ( x ) f(x) f(x) 被两个函数 g ( x ) g(x) g(x) h ( x ) h(x) h(x) 夹逼,且 lim ⁡ x → a g ( x ) = lim ⁡ x → a h ( x ) = L \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L limxag(x)=limxah(x)=L,则 lim ⁡ x → a f ( x ) = L \lim_{x \to a} f(x) = L limxaf(x)=L

导数与微分
导数定义及几何意义

导数是描述函数变化率的工具。函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 处的导数定义为:
f ′ ( a ) = lim ⁡ h → 0 f ( a + h ) − f ( a ) h f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} f(a)=h0limhf(a+h)f(a)
几何上,导数 f ′ ( a ) f'(a) f(a) 表示函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 处切线的斜率。

导数的计算规则与应用

导数的计算可通过以下规则进行:

  1. 幂函数法则
    d d x x n = n x n − 1 \frac{d}{dx} x^n = n x^{n-1} dxdxn=nxn1
  2. 和差法则
    d d x [ f ( x ) ± g ( x ) ] = f ′ ( x ) ± g ′ ( x ) \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) dxd[f(x)±g(x)]=f(x)±g(x)
  3. 乘积法则
    d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) dxd[f(x)g(x)]=f(x)g(x)+f(x)g(x)
  4. 商法则
    d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} dxd[g(x)f(x)]=[g(x)]2f(x)g(x)f(x)g(x)
  5. 链式法则
    d d x f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) dxdf(g(x))=f(g(x))g(x)

应用实例
求函数 f ( x ) = x 3 sin ⁡ x f(x) = x^3 \sin x f(x)=x3sinx 的导数:
f ′ ( x ) = d d x ( x 3 ) ⋅ sin ⁡ x + x 3 ⋅ d d x ( sin ⁡ x ) = 3 x 2 sin ⁡ x + x 3 cos ⁡ x f'(x) = \frac{d}{dx} (x^3) \cdot \sin x + x^3 \cdot \frac{d}{dx} (\sin x) = 3x^2 \sin x + x^3 \cos x f(x)=dxd(x3)sinx+x3dxd(sinx)=3x2sinx+x3cosx

积分
不定积分与定积分

积分是导数的逆运算,分为不定积分和定积分。

  1. 不定积分:表示所有原函数的集合,形式为:
    ∫ f ( x )   d x = F ( x ) + C \int f(x) \, dx = F(x) + C f(x)dx=F(x)+C
    其中, F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x) C C C 为任意常数。

  2. 定积分:表示函数在区间 [ a , b ] [a, b] [a,b] 上的累积量,常用于计算面积、体积等。定义为:
    ∫ a b f ( x )   d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) abf(x)dx=F(b)F(a)
    其中, F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数。

积分技巧与应用

积分的计算可以通过多种技巧实现,常用的方法包括:

  1. 直接积分法:利用基本积分公式进行积分。
    例如:
    ∫ x 2   d x = x 3 3 + C \int x^2 \, dx = \frac{x^3}{3} + C x2dx=3x3+C

  2. 分部积分法:适用于两个函数的乘积积分,公式为:
    ∫ u   d v = u v − ∫ v   d u \int u \, dv = uv - \int v \, du udv=uvvdu
    例如:
    ∫ x e x   d x = x e x − ∫ e x   d x = x e x − e x + C \int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C xexdx=xexexdx=xexex+C

  3. 三角代换法:用于含有根号的积分,通过引入三角函数进行代换。
    例如:
    ∫ d x a 2 − x 2 = arcsin ⁡ ( x a ) + C \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) + C a2x2 dx=arcsin(ax)+C

  4. 有理化法:类似于极限中的有理化,通过消除根号简化积分。
    例如:
    ∫ x x + 1   d x = 2 x − 2 ln ⁡ ( x + 1 ) + C \int \frac{\sqrt{x}}{x + 1} \, dx = 2\sqrt{x} - 2\ln(\sqrt{x} + 1) + C x+1x dx=2x 2ln(x +1)+C

应用实例
计算函数 f ( x ) = x 2 f(x) = x^2 f(x)=x2 在区间 [ 0 , 3 ] [0, 3] [0,3] 上的定积分:
∫ 0 3 x 2   d x = [ x 3 3 ] 0 3 = 27 3 − 0 = 9 \int_{0}^{3} x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^3 = \frac{27}{3} - 0 = 9 03x2dx=[3x3]03=3270=9

多元微积分

偏导数与梯度
偏导数的定义与计算

对于多元函数 f ( x , y , …   ) f(x, y, \dots) f(x,y,),偏导数是对其中一个变量求导时,其他变量视为常数。以二维函数为例:
∂ f ∂ x = lim ⁡ h → 0 f ( x + h , y ) − f ( x , y ) h \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} xf=h0limhf(x+h,y)f(x,y)
∂ f ∂ y = lim ⁡ h → 0 f ( x , y + h ) − f ( x , y ) h \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h} yf=h0limhf(x,y+h)f(x,y)

梯度向量及其应用

梯度向量是由函数的所有偏导数组成的向量,表示函数在各个方向上的变化率:
∇ f = ( ∂ f ∂ x , ∂ f ∂ y , …   ) \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \dots \right) f=(xf,yf,)
梯度向量的方向表示函数增长最快的方向,其长度表示变化率的大小。

应用实例
对于函数 f ( x , y ) = x 2 + y 2 f(x, y) = x^2 + y^2 f(x,y)=x2+y2,梯度向量为:
∇ f = ( 2 x , 2 y ) \nabla f = (2x, 2y) f=(2x,2y)
在点 ( 1 , 1 ) (1,1) (1,1) 处,梯度向量为 ( 2 , 2 ) (2, 2) (2,2),指向函数值增长最快的方向。

多重积分
二重积分与三重积分

多重积分扩展了一元积分的概念,用于计算多变量函数在区域上的累积量。二重积分用于二维区域,三重积分用于三维区域。

例如,计算函数 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy 在矩形区域 [ 0 , 1 ] × [ 0 , 2 ] [0,1] \times [0,2] [0,1]×[0,2] 上的二重积分:
∫ 0 1 ∫ 0 2 x y   d y   d x = ∫ 0 1 [ x y 2 2 ] 0 2 d x = ∫ 0 1 4 x 2 d x = ∫ 0 1 2 x   d x = [ x 2 ] 0 1 = 1 \int_{0}^{1} \int_{0}^{2} xy \, dy \, dx = \int_{0}^{1} \left[ \frac{xy^2}{2} \right]_0^2 dx = \int_{0}^{1} \frac{4x}{2} dx = \int_{0}^{1} 2x \, dx = \left[ x^2 \right]_0^1 = 1 0102xydydx=01[2xy2]02dx=0124xdx=012xdx=[x2]01=1

变换积分方法

变换积分通过坐标变换简化积分区域或被积函数,包括极坐标、球坐标等。

极坐标变换
x = r cos ⁡ θ , y = r sin ⁡ θ x = r \cos \theta, \quad y = r \sin \theta x=rcosθ,y=rsinθ
对应的面积元素为 d A = r   d r   d θ dA = r \, dr \, d\theta dA=rdrdθ

应用实例
计算单位圆内的面积:
∫ 0 2 π ∫ 0 1 r   d r   d θ = ∫ 0 2 π [ r 2 2 ] 0 1 d θ = ∫ 0 2 π 1 2 d θ = π \int_{0}^{2\pi} \int_{0}^{1} r \, dr \, d\theta = \int_{0}^{2\pi} \left[ \frac{r^2}{2} \right]_0^1 d\theta = \int_{0}^{2\pi} \frac{1}{2} d\theta = \pi 02π01rdrdθ=02π[2r2]01dθ=02π21dθ=π

向量微积分
散度与旋度

对于向量场 F = ( P , Q , R ) \mathbf{F} = (P, Q, R) F=(P,Q,R),散度和旋度是描述向量场性质的重要概念。

散度定义为:
∇ ⋅ F = ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} F=xP+yQ+zR
散度反映了向量场源或汇的强度。

旋度定义为:
∇ × F = ( ∂ R ∂ y − ∂ Q ∂ z , ∂ P ∂ z − ∂ R ∂ x , ∂ Q ∂ x − ∂ P ∂ y ) \nabla \times \mathbf{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) ×F=(yRzQ,zPxR,xQyP)
旋度描述了向量场的旋转性质。

格林公式、高斯定理与斯托克斯公式

这些定理将微积分与几何联系起来,用于计算曲线或曲面的积分。

  1. 格林公式(二维):
    ∮ C ( P   d x + Q   d y ) = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x   d y \oint_{C} (P \, dx + Q \, dy) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy C(Pdx+Qdy)=D(xQyP)dxdy
    将曲线积分转化为区域积分。

  2. 高斯定理(散度定理)(三维):
    ∬ S F ⋅ n   d S = ∭ V ∇ ⋅ F   d V \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{V} \nabla \cdot \mathbf{F} \, dV SFndS=VFdV
    将曲面积分转化为体积分。

  3. 斯托克斯公式(旋度定理):
    ∮ C F ⋅ d r = ∬ S ( ∇ × F ) ⋅ n   d S \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS CFdr=S(×F)ndS
    将曲线积分转化为曲面积分。

应用实例
利用格林公式计算平面区域 D D D 上的面积:
P = − y 2 P = -\frac{y}{2} P=2y Q = x 2 Q = \frac{x}{2} Q=2x,则
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x   d y = ∬ D ( 1 2 + 1 2 ) d x   d y = ∬ D 1   d x   d y = Area ( D ) \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \iint_{D} \left( \frac{1}{2} + \frac{1}{2} \right) dx \, dy = \iint_{D} 1 \, dx \, dy = \text{Area}(D) D(xQyP)dxdy=D(21+21)dxdy=D1dxdy=Area(D)
根据格林公式,有
∮ C ( − y 2 d x + x 2 d y ) = Area ( D ) \oint_{C} \left( -\frac{y}{2} dx + \frac{x}{2} dy \right) = \text{Area}(D) C(2ydx+2xdy)=Area(D)

第二部分:线性代数

向量与矩阵

向量空间
向量的线性组合与基

向量的线性组合是向量空间中最基本的运算之一。设有向量集合 { v 1 , v 2 , … , v n } \{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \} {v1,v2,,vn},任意向量 v \mathbf{v} v 可表示为
v = c 1 v 1 + c 2 v 2 + ⋯ + c n v n \mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n v=c1v1+c2v2++cnvn
其中, c 1 , c 2 , … , c n c_1, c_2, \ldots, c_n c1,c2,,cn 为标量。线性组合的概念是理解向量空间结构的基础。

是向量空间的核心概念,具有以下两个基本性质:

  1. 线性无关性:任何一个基向量都不能表示为其他基向量的线性组合。
  2. 生成性:任意向量都可以表示为基向量的线性组合。

基的选择不是唯一的,但不同基之间可以通过可逆线性变换相互转换。基的维数决定了向量空间的维数。

子空间与维数

子空间是向量空间的一个重要概念,它满足以下三个条件:

  1. 包含零向量。
  2. 对于任意向量 u , v \mathbf{u}, \mathbf{v} u,v 属于子空间, u + v \mathbf{u} + \mathbf{v} u+v 也属于子空间。
  3. 对于任意向量 u \mathbf{u} u 属于子空间和标量 c c c,标量乘积 c u c\mathbf{u} cu 也属于子空间。

维数是向量空间的重要特征,它等于基向量的数量。例如:

  • R n \mathbb{R}^n Rn 的维数为 n n n
  • 多项式空间 P n P_n Pn 的维数为 n + 1 n+1 n+1
  • 矩阵空间 M m × n M_{m \times n} Mm×n 的维数为 m × n m \times n m×n
矩阵运算
基本矩阵运算

矩阵运算是线性代数的基础,主要包括以下运算:

  • 矩阵加法:两个同型矩阵对应元素相加,即
    ( A + B ) i j = A i j + B i j (A + B)_{ij} = A_{ij} + B_{ij} (A+B)ij=Aij+Bij
  • 标量乘法:矩阵的每个元素乘以一个标量 c c c,即
    ( c A ) i j = c ⋅ A i j (cA)_{ij} = c \cdot A_{ij} (cA)ij=cAij
  • 矩阵乘法:若 A A A m × n m \times n m×n 矩阵, B B B n × p n \times p n×p 矩阵,则乘积 A B AB AB 是一个 m × p m \times p m×p 矩阵,其元素为
    ( A B ) i j = ∑ k = 1 n A i k B k j (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} (AB)ij=k=1nAikBkj
    矩阵乘法具有结合律但不满足交换律。
矩阵的秩与逆
  • 矩阵的秩:矩阵 A A A 的秩是其列向量(或行向量)的线性无关的最大数目,记为 rank ( A ) \text{rank}(A) rank(A)。秩反映了矩阵的线性相关性和满秩性。重要性质包括:

    • rank ( A ) ≤ min ⁡ ( m , n ) \text{rank}(A) \leq \min(m,n) rank(A)min(m,n)
    • rank ( A B ) ≤ min ⁡ ( rank ( A ) , rank ( B ) ) \text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) rank(AB)min(rank(A),rank(B))
  • 矩阵的逆:只有方阵且满秩的矩阵才有逆矩阵。若 A A A n × n n \times n n×n 矩阵,存在矩阵 A − 1 A^{-1} A1 使得
    A A − 1 = A − 1 A = I n AA^{-1} = A^{-1}A = I_n AA1=A1A=In
    其中, I n I_n In n n n 阶单位矩阵。逆矩阵的存在性与矩阵的行列式相关,即 det ( A ) ≠ 0 \text{det}(A) \neq 0 det(A)=0

特征值与特征向量

特征值问题
特征值与特征向量的定义

对于一个 n × n n \times n n×n 矩阵 A A A,如果存在非零向量 v \mathbf{v} v 和标量 λ \lambda λ,使得
A v = λ v A\mathbf{v} = \lambda \mathbf{v} Av=λv
则称 λ \lambda λ A A A特征值 v \mathbf{v} v 为对应的特征向量。特征值和特征向量反映了矩阵的本质特征。

计算方法与性质
  • 计算方法:求解特征值需要解特征方程
    det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det(AλI)=0
    方程的解 λ \lambda λ 即为矩阵 A A A 的特征值。求得特征值后,将其代入 ( A − λ I ) v = 0 (A - \lambda I)\mathbf{v} = 0 (AλI)v=0 求解对应的特征向量。

  • 重要性质

    1. 一个 n × n n \times n n×n 矩阵最多有 n n n 个特征值(包括重根)。
    2. 实对称矩阵的特征值均为实数,且具有正交的特征向量。
    3. 特征值的和等于矩阵的迹,即
      ∑ i = 1 n λ i = trace ( A ) \sum_{i=1}^{n} \lambda_i = \text{trace}(A) i=1nλi=trace(A)
    4. 特征值的积等于矩阵的行列式,即
      ∏ i = 1 n λ i = det ( A ) \prod_{i=1}^{n} \lambda_i = \text{det}(A) i=1nλi=det(A)
对角化与规范形
矩阵对角化条件

一个矩阵 A A A 可以对角化,当且仅当其拥有 n n n 个线性无关的特征向量。即存在一个可逆矩阵 P P P 和对角矩阵 D D D,使得
A = P D P − 1 A = PDP^{-1} A=PDP1
其中,对角矩阵 D D D 的对角元素为 A A A 的特征值。对角化可以简化矩阵的运算和分析。

相似变换与规范形
  • 相似变换:矩阵 A A A B B B 称为相似的,如果存在可逆矩阵 P P P 满足
    B = P − 1 A P B = P^{-1}AP B=P1AP
    相似矩阵具有相同的特征值、行列式和迹。

  • 规范形:将矩阵通过一系列相似变换转化为简化形式,如对角矩阵或约旦标准形,以便于分析和计算。对于可对角化的矩阵,其规范形即为对角矩阵;对于不可对角化的矩阵,则需要使用约旦标准形。

实例应用
考虑矩阵
A = ( 4 1 2 3 ) A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix} A=(4213)
求其特征值和特征向量。

  1. 求特征值:
    det ( A − λ I ) = ∣ 4 − λ 1 2 3 − λ ∣ = ( 4 − λ ) ( 3 − λ ) − 2 = λ 2 − 7 λ + 10 = 0 \text{det}(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10 = 0 det(AλI)= 4λ213λ =(4λ)(3λ)2=λ27λ+10=0
    解得 λ = 5 , 2 \lambda = 5, 2 λ=5,2

  2. 求特征向量:
    对于 λ = 5 \lambda = 5 λ=5
    ( A − 5 I ) v = 0 ⇒ ( − 1 1 2 − 2 ) v = 0 ⇒ v = ( 1 1 ) (A - 5I)\mathbf{v} = 0 \Rightarrow \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (A5I)v=0(1212)v=0v=(11)
    对于 λ = 2 \lambda = 2 λ=2
    ( A − 2 I ) v = 0 ⇒ ( 2 1 2 1 ) v = 0 ⇒ v = ( − 0.5 1 ) (A - 2I)\mathbf{v} = 0 \Rightarrow \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{pmatrix} -0.5 \\ 1 \end{pmatrix} (A2I)v=0(2211)v=0v=(0.51)
    因此,矩阵 A A A 可对角化为
    P = ( 1 − 0.5 1 1 ) , D = ( 5 0 0 2 ) P = \begin{pmatrix} 1 & -0.5 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} P=(110.51),D=(5002)
    满足 A = P D P − 1 A = PDP^{-1} A=PDP1

第三部分:常微分方程

一阶微分方程

可分离方程
定义与性质

可分离方程是一类特殊的一阶微分方程,其特点是可以将自变量和因变量分别置于方程的两侧。一般形式为:
d y d x = g ( x ) h ( y ) \frac{dy}{dx} = g(x)h(y) dxdy=g(x)h(y)
其中, g ( x ) g(x) g(x) h ( y ) h(y) h(y) 分别是关于 x x x y y y 的连续函数。这类方程在物理、化学、生物等领域有广泛应用,如人口增长模型、放射性衰变等。

求解方法
  1. 分离变量:将方程改写为
    1 h ( y ) d y = g ( x ) d x \frac{1}{h(y)} dy = g(x) dx h(y)1dy=g(x)dx
  2. 两边积分:
    ∫ 1 h ( y ) d y = ∫ g ( x ) d x + C \int \frac{1}{h(y)} dy = \int g(x) dx + C h(y)1dy=g(x)dx+C
    其中, C C C 为积分常数。
  3. 解出 y y y 关于 x x x 的显式表达式(如果可能)。
应用实例

求解微分方程:
d y d x = x y \frac{dy}{dx} = xy dxdy=xy
解:

  1. 分离变量:
    1 y d y = x d x \frac{1}{y} dy = x dx y1dy=xdx
  2. 两边积分:
    ln ⁡ ∣ y ∣ = x 2 2 + C \ln |y| = \frac{x^2}{2} + C lny=2x2+C
  3. 解得通解:
    y = C e x 2 2 y = Ce^{\frac{x^2}{2}} y=Ce2x2
    其中, C C C 为任意常数。
线性一阶方程
定义与标准形式

线性一阶微分方程的标准形式为:
d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx} + P(x)y = Q(x) dxdy+P(x)y=Q(x)
其中, P ( x ) P(x) P(x) Q ( x ) Q(x) Q(x) 是已知的连续函数。这类方程在电路分析、热传导等领域有重要应用。

积分因子法
  1. 计算积分因子:
    μ ( x ) = e ∫ P ( x ) d x \mu(x) = e^{\int P(x) dx} μ(x)=eP(x)dx
  2. 将方程乘以积分因子:
    μ ( x ) d y d x + μ ( x ) P ( x ) y = μ ( x ) Q ( x ) \mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x) μ(x)dxdy+μ(x)P(x)y=μ(x)Q(x)
  3. 左边可写成导数形式:
    d d x [ μ ( x ) y ] = μ ( x ) Q ( x ) \frac{d}{dx}\left[\mu(x)y\right] = \mu(x)Q(x) dxd[μ(x)y]=μ(x)Q(x)
  4. 两边积分得通解:
    y = 1 μ ( x ) ( ∫ μ ( x ) Q ( x ) d x + C ) y = \frac{1}{\mu(x)}\left(\int \mu(x)Q(x) dx + C\right) y=μ(x)1(μ(x)Q(x)dx+C)
应用实例

求解微分方程:
d y d x + 2 y = e − x \frac{dy}{dx} + 2y = e^{-x} dxdy+2y=ex
解:

  1. 计算积分因子:
    μ ( x ) = e ∫ 2 d x = e 2 x \mu(x) = e^{\int 2 dx} = e^{2x} μ(x)=e2dx=e2x
  2. 将方程乘以积分因子:
    e 2 x d y d x + 2 e 2 x y = e x e^{2x}\frac{dy}{dx} + 2e^{2x}y = e^{x} e2xdxdy+2e2xy=ex
  3. 左边为导数形式:
    d d x [ e 2 x y ] = e x \frac{d}{dx}\left[e^{2x}y\right] = e^{x} dxd[e2xy]=ex
  4. 两边积分得:
    e 2 x y = e x + C e^{2x}y = e^{x} + C e2xy=ex+C
  5. 解得通解:
    y = e − x + C e − 2 x y = e^{-x} + Ce^{-2x} y=ex+Ce2x
    其中, C C C 为任意常数。

高阶微分方程

线性常系数方程
定义与标准形式

线性常系数微分方程的一般形式为:
a n d n y d x n + a n − 1 d n − 1 y d x n − 1 + ⋯ + a 1 d y d x + a 0 y = 0 a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0 andxndny+an1dxn1dn1y++a1dxdy+a0y=0
其中, a i a_i ai 为常数。这类方程在机械振动、电路分析等领域有重要应用。

特征方程法
  1. 假设解的形式为 y = e λ x y = e^{\lambda x} y=eλx,代入方程得到特征方程:
    a n λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 = 0 a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0 anλn+an1λn1++a1λ+a0=0
  2. 根据特征根的不同情况构造通解:
    • 单实根 λ \lambda λ C e λ x Ce^{\lambda x} Ceλx
    • 重实根 λ \lambda λ(重数 k k k): ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e λ x (C_1 + C_2 x + \dots + C_k x^{k-1}) e^{\lambda x} (C1+C2x++Ckxk1)eλx
    • 共轭复根 α ± β i \alpha \pm \beta i α±βi e α x ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) eαx(C1cosβx+C2sinβx)
非齐次方程
常数变易法
  1. 求解对应的齐次方程,得到通解 y h y_h yh
  2. 假设特解 y p y_p yp 的形式,其中包含待定函数
  3. y p y_p yp 代入原方程,确定待定函数
  4. 通解为:
    y = y h + y p y = y_h + y_p y=yh+yp
特解选择原则
  1. Q ( x ) Q(x) Q(x) 为多项式,假设特解为同次多项式
  2. Q ( x ) Q(x) Q(x) 为指数函数,假设特解为同底指数函数
  3. Q ( x ) Q(x) Q(x) 为三角函数,假设特解为同频率的三角函数
  4. 若假设形式与齐次解重复,需乘以 x x x 的适当幂次
应用实例

求解微分方程:
y ′ ′ − 3 y ′ + 2 y = e x y'' - 3y' + 2y = e^{x} y′′3y+2y=ex
解:

  1. 齐次方程的特征方程:
    λ 2 − 3 λ + 2 = 0 ⇒ λ = 1 , 2 \lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda = 1, 2 λ23λ+2=0λ=1,2
  2. 齐次通解:
    y h = C 1 e x + C 2 e 2 x y_h = C_1 e^{x} + C_2 e^{2x} yh=C1ex+C2e2x
  3. 假设特解(因 e x e^x ex 与齐次解重复,乘以 x x x):
    y p = A x e x y_p = Ax e^{x} yp=Axex
  4. 代入原方程求得 A = − 1 A = -1 A=1
  5. 最终通解:
    y = C 1 e x + C 2 e 2 x − x e x y = C_1 e^{x} + C_2 e^{2x} - x e^{x} y=C1ex+C2e2xxex
    其中, C 1 , C 2 C_1, C_2 C1,C2 为任意常数。

第四部分:数值方法

数值方法是通过近似计算来解决数学问题的技术,在工程和科学计算中具有广泛应用。本章将系统介绍数值逼近、数值积分与微分、以及方程数值解的基本方法。

数值逼近

数值逼近是通过已知的离散数据点来估计未知函数值的方法,主要包括插值和拟合两种基本方法。

插值与拟合
拉格朗日插值

拉格朗日插值法是一种通过已知数据点构建多项式的方法,用于在这些点之间进行插值估计。给定 n + 1 n+1 n+1 个数据点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , … , ( x n , y n ) (x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) (x0,y0),(x1,y1),,(xn,yn),拉格朗日插值多项式 P n ( x ) P_n(x) Pn(x) 的形式为:

P n ( x ) = ∑ i = 0 n y i L i ( x ) P_n(x) = \sum_{i=0}^{n} y_i L_i(x) Pn(x)=i=0nyiLi(x)

其中, L i ( x ) L_i(x) Li(x) 是第 i i i 个拉格朗日基函数,定义为:

L i ( x ) = ∏ 0 ≤ j ≤ n j ≠ i x − x j x i − x j L_i(x) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{x - x_j}{x_i - x_j} Li(x)=0jnj=ixixjxxj

性质与优点

  • 唯一性:通过 n + 1 n+1 n+1 个点的插值多项式是唯一的
  • 简便性:不需要解线性方程组即可直接构造插值多项式
  • 局限性:当插值点较多时,可能出现Runge现象,导致插值多项式在区间端点附近剧烈振荡

应用实例

假设有三个数据点 ( 1 , 2 ) (1, 2) (1,2), ( 2 , 3 ) (2, 3) (2,3), ( 4 , 1 ) (4, 1) (4,1),求拉格朗日插值多项式。

  1. 计算基函数:

L 0 ( x ) = ( x − 2 ) ( x − 4 ) ( 1 − 2 ) ( 1 − 4 ) = ( x − 2 ) ( x − 4 ) 3 L_0(x) = \frac{(x - 2)(x - 4)}{(1 - 2)(1 - 4)} = \frac{(x - 2)(x - 4)}{3} L0(x)=(12)(14)(x2)(x4)=3(x2)(x4)

L 1 ( x ) = ( x − 1 ) ( x − 4 ) ( 2 − 1 ) ( 2 − 4 ) = ( x − 1 ) ( x − 4 ) − 2 L_1(x) = \frac{(x - 1)(x - 4)}{(2 - 1)(2 - 4)} = \frac{(x - 1)(x - 4)}{-2} L1(x)=(21)(24)(x1)(x4)=2(x1)(x4)

L 2 ( x ) = ( x − 1 ) ( x − 2 ) ( 4 − 1 ) ( 4 − 2 ) = ( x − 1 ) ( x − 2 ) 6 L_2(x) = \frac{(x - 1)(x - 2)}{(4 - 1)(4 - 2)} = \frac{(x - 1)(x - 2)}{6} L2(x)=(41)(42)(x1)(x2)=6(x1)(x2)

  1. 构建插值多项式:

P 2 ( x ) = 2 L 0 ( x ) + 3 L 1 ( x ) + 1 L 2 ( x ) P_2(x) = 2L_0(x) + 3L_1(x) + 1L_2(x) P2(x)=2L0(x)+3L1(x)+1L2(x)

P 2 ( x ) = 2 ⋅ ( x − 2 ) ( x − 4 ) 3 + 3 ⋅ ( x − 1 ) ( x − 4 ) − 2 + 1 ⋅ ( x − 1 ) ( x − 2 ) 6 P_2(x) = 2 \cdot \frac{(x - 2)(x - 4)}{3} + 3 \cdot \frac{(x - 1)(x - 4)}{-2} + 1 \cdot \frac{(x - 1)(x - 2)}{6} P2(x)=23(x2)(x4)+32(x1)(x4)+16(x1)(x2)

  1. 化简得:

P 2 ( x ) = 2 ( x 2 − 6 x + 8 ) 3 − 3 ( x 2 − 5 x + 4 ) 2 + x 2 − 3 x + 2 6 P_2(x) = \frac{2(x^2 - 6x + 8)}{3} - \frac{3(x^2 - 5x + 4)}{2} + \frac{x^2 - 3x + 2}{6} P2(x)=32(x26x+8)23(x25x+4)+6x23x+2

经过计算,最终得到插值多项式 P 2 ( x ) = − 1 2 x 2 + 7 2 x − 2 P_2(x) = -\frac{1}{2}x^2 + \frac{7}{2}x - 2 P2(x)=21x2+27x2

最小二乘拟合

最小二乘拟合法用于在存在误差的数据点中寻找最佳拟合曲线,使得拟合曲线与数据点之间的误差平方和最小。对于线性最小二乘拟合,假设拟合曲线为:

y = a x + b y = ax + b y=ax+b

给定数据点 ( x i , y i ) (x_i, y_i) (xi,yi),误差平方和 S S S 为:

S = ∑ i = 1 m ( y i − ( a x i + b ) ) 2 S = \sum_{i=1}^{m} (y_i - (ax_i + b))^2 S=i=1m(yi(axi+b))2

为了最小化 S S S,对 a a a b b b 求偏导并令其为零,得到正规方程:

{ ∑ i = 1 m y i = a ∑ i = 1 m x i + b m ∑ i = 1 m x i y i = a ∑ i = 1 m x i 2 + b ∑ i = 1 m x i \begin{cases} \sum_{i=1}^{m} y_i = a \sum_{i=1}^{m} x_i + b m \\ \sum_{i=1}^{m} x_i y_i = a \sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i \end{cases} {i=1myi=ai=1mxi+bmi=1mxiyi=ai=1mxi2+bi=1mxi

通过解这组方程,可以得到最佳拟合直线的参数 a a a b b b

应用实例

假设有数据点 ( 1 , 2 ) (1, 2) (1,2), ( 2 , 3 ) (2, 3) (2,3), ( 3 , 5 ) (3, 5) (3,5),使用最小二乘法拟合直线。

  1. 计算各项和:

∑ y i = 2 + 3 + 5 = 10 \sum y_i = 2 + 3 + 5 = 10 yi=2+3+5=10

∑ x i = 1 + 2 + 3 = 6 \sum x_i = 1 + 2 + 3 = 6 xi=1+2+3=6

∑ x i y i = 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 5 = 2 + 6 + 15 = 23 \sum x_i y_i = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 5 = 2 + 6 + 15 = 23 xiyi=12+23+35=2+6+15=23

∑ x i 2 = 1 2 + 2 2 + 3 2 = 1 + 4 + 9 = 14 \sum x_i^2 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 xi2=12+22+32=1+4+9=14

  1. 代入正规方程:

{ 10 = 6 a + 3 b 23 = 14 a + 6 b \begin{cases} 10 = 6a + 3b \\ 23 = 14a + 6b \end{cases} {10=6a+3b23=14a+6b

  1. 解得:

a = 3 2 = 1.5 , b = 1 3 ≈ 0.3333 a = \frac{3}{2} = 1.5, \quad b = \frac{1}{3} \approx 0.3333 a=23=1.5,b=310.3333

因此,最佳拟合直线为:

y = 1.5 x + 0.3333 y = 1.5x + 0.3333 y=1.5x+0.3333

数值积分与导数
梯形法则与辛普森法则

梯形法则是一种用于数值积分的基本方法,通过将积分区间分割成若干梯形并求其面积之和来近似积分值。对于函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的积分:

∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_{a}^{b} f(x) dx \approx \frac{b - a}{2} [f(a) + f(b)] abf(x)dx2ba[f(a)+f(b)]

辛普森法则利用抛物线更精确地近似曲线下的面积,适用于函数在区间内平滑变化的情况:

∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_{a}^{b} f(x) dx \approx \frac{b - a}{6} [f(a) + 4f\left(\frac{a + b}{2}\right) + f(b)] abf(x)dx6ba[f(a)+4f(2a+b)+f(b)]

比较与选择

  • 精度:辛普森法则的精度通常高于梯形法则,尤其是当函数具有较高的曲率时
  • 计算复杂度:辛普森法则需要计算中点的函数值,计算量略高于梯形法则
  • 适用性:梯形法则适用于任意可积函数,而辛普森法则要求函数在积分区间内足够光滑

应用实例

计算函数 f ( x ) = sin ⁡ ( x ) f(x) = \sin(x) f(x)=sin(x) 在区间 [ 0 , π ] [0, \pi] [0,π] 上的积分。

  1. 梯形法则

∫ 0 π sin ⁡ ( x ) d x ≈ π − 0 2 [ sin ⁡ ( 0 ) + sin ⁡ ( π ) ] = π 2 ( 0 + 0 ) = 0 \int_{0}^{\pi} \sin(x) dx \approx \frac{\pi - 0}{2} [\sin(0) + \sin(\pi)] = \frac{\pi}{2} (0 + 0) = 0 0πsin(x)dx2π0[sin(0)+sin(π)]=2π(0+0)=0

明显不准确。

  1. 辛普森法则

∫ 0 π sin ⁡ ( x ) d x ≈ π 6 [ sin ⁡ ( 0 ) + 4 sin ⁡ ( π 2 ) + sin ⁡ ( π ) ] = π 6 ( 0 + 4 ⋅ 1 + 0 ) = 2 π 3 ≈ 2.094 \int_{0}^{\pi} \sin(x) dx \approx \frac{\pi}{6} \left[ \sin(0) + 4\sin\left(\frac{\pi}{2}\right) + \sin(\pi) \right] = \frac{\pi}{6} (0 + 4 \cdot 1 + 0) = \frac{2\pi}{3} \approx 2.094 0πsin(x)dx6π[sin(0)+4sin(2π)+sin(π)]=6π(0+41+0)=32π2.094

实际值为 2 2 2, 辛普森法则的估计更接近真实值。

数值微分方法

数值微分用于近似计算函数的导数,常用的方法包括前向差分、后向差分和中心差分。

  1. 前向差分

f ′ ( x ) ≈ f ( x + h ) − f ( x ) h f'(x) \approx \frac{f(x + h) - f(x)}{h} f(x)hf(x+h)f(x)

  1. 后向差分

f ′ ( x ) ≈ f ( x ) − f ( x − h ) h f'(x) \approx \frac{f(x) - f(x - h)}{h} f(x)hf(x)f(xh)

  1. 中心差分

f ′ ( x ) ≈ f ( x + h ) − f ( x − h ) 2 h f'(x) \approx \frac{f(x + h) - f(x - h)}{2h} f(x)2hf(x+h)f(xh)

误差分析

  • 前向和后向差分的截断误差为 O ( h ) O(h) O(h)
  • 中心差分的截断误差为 O ( h 2 ) O(h^2) O(h2),精度更高
  • 步长 h h h 的选择需要在截断误差和舍入误差之间权衡

应用实例

求函数 f ( x ) = e x f(x) = e^x f(x)=ex x = 0 x=0 x=0 处的导数。

  1. 理论导数:

f ′ ( 0 ) = e 0 = 1 f'(0) = e^0 = 1 f(0)=e0=1

  1. 数值近似(取 h = 0.01 h = 0.01 h=0.01):
  • 前向差分:

f ′ ( 0 ) ≈ e 0.01 − e 0 0.01 = 1.01005 − 1 0.01 = 1.005 f'(0) \approx \frac{e^{0.01} - e^{0}}{0.01} = \frac{1.01005 - 1}{0.01} = 1.005 f(0)0.01e0.01e0=0.011.010051=1.005

  • 中心差分:

f ′ ( 0 ) ≈ e 0.01 − e − 0.01 0.02 = 1.01005 − 0.99005 0.02 = 1.0000 f'(0) \approx \frac{e^{0.01} - e^{-0.01}}{0.02} = \frac{1.01005 - 0.99005}{0.02} = 1.0000 f(0)0.02e0.01e0.01=0.021.010050.99005=1.0000

中心差分的结果更为精确,接近理论值。

数值解方程

线性方程组
高斯消元法

高斯消元法是一种系统地消去线性方程组中未知数的方法,通过行变换将增广矩阵化为上三角矩阵,从而逐步求解。

步骤

  1. 构建增广矩阵:将线性方程组写成矩阵形式,包括系数矩阵和常数向量

  2. 构建增广矩阵:将线性方程组写成矩阵形式,包括系数矩阵和常数向量。

  3. 前向消元:通过行变换,使得矩阵的下方区域变为零,形成上三角矩阵。

  4. 回代求解:从最后一个方程开始,逐步求解出各未知数的值。

应用实例

解方程组:

{ 2 x + 3 y − z = 5 4 x + 4 y − 3 z = 3 − 2 x + 3 y − 2 z = 2 \begin{cases} 2x + 3y - z = 5 \\ 4x + 4y - 3z = 3 \\ -2x + 3y - 2z = 2 \end{cases} 2x+3yz=54x+4y3z=32x+3y2z=2

  1. 构建增广矩阵:

( 2 3 − 1 ∣ 5 4 4 − 3 ∣ 3 − 2 3 − 2 ∣ 2 ) \begin{pmatrix} 2 & 3 & -1 & | & 5 \\ 4 & 4 & -3 & | & 3 \\ -2 & 3 & -2 & | & 2 \end{pmatrix} 242343132532

  1. 前向消元:
  • 将第二行减去两倍的第一行:

R 2 = R 2 − 2 R 1 ⇒ ( 4 4 − 3 ∣ 3 ) − 2 ⋅ ( 2 3 − 1 ∣ 5 ) = ( 0 − 2 − 1 ∣ − 7 ) R2 = R2 - 2R1 \Rightarrow \begin{pmatrix} 4 & 4 & -3 & | & 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} 2 & 3 & -1 & | & 5 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -1 & | & -7 \end{pmatrix} R2=R22R1(4433)2(2315)=(0217)

  • 将第三行加上第一行:

R 3 = R 3 + R 1 ⇒ ( − 2 3 − 2 ∣ 2 ) + ( 2 3 − 1 ∣ 5 ) = ( 0 6 − 3 ∣ 7 ) R3 = R3 + R1 \Rightarrow \begin{pmatrix} -2 & 3 & -2 & | & 2 \end{pmatrix} + \begin{pmatrix} 2 & 3 & -1 & | & 5 \end{pmatrix} = \begin{pmatrix} 0 & 6 & -3 & | & 7 \end{pmatrix} R3=R3+R1(2322)+(2315)=(0637)

  1. 新的增广矩阵:

( 2 3 − 1 ∣ 5 0 − 2 − 1 ∣ − 7 0 6 − 3 ∣ 7 ) \begin{pmatrix} 2 & 3 & -1 & | & 5 \\ 0 & -2 & -1 & | & -7 \\ 0 & 6 & -3 & | & 7 \end{pmatrix} 200326113577

  1. 消去第三行的第二个未知数:

R 3 = R 3 + 3 R 2 ⇒ ( 0 6 − 3 ∣ 7 ) + 3 ⋅ ( 0 − 2 − 1 ∣ − 7 ) = ( 0 0 − 6 ∣ − 14 ) R3 = R3 + 3R2 \Rightarrow \begin{pmatrix} 0 & 6 & -3 & | & 7 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 & -2 & -1 & | & -7 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -6 & | & -14 \end{pmatrix} R3=R3+3R2(0637)+3(0217)=(00614)

  1. 回代求解:

从第三行:

− 6 z = − 14 ⇒ z = 14 6 = 7 3 -6z = -14 \Rightarrow z = \frac{14}{6} = \frac{7}{3} 6z=14z=614=37

从第二行:

− 2 y − z = − 7 ⇒ − 2 y − 7 3 = − 7 ⇒ − 2 y = − 7 + 7 3 = − 14 3 ⇒ y = 7 3 -2y - z = -7 \Rightarrow -2y - \frac{7}{3} = -7 \Rightarrow -2y = -7 + \frac{7}{3} = -\frac{14}{3} \Rightarrow y = \frac{7}{3} 2yz=72y37=72y=7+37=314y=37

从第一行:

2 x + 3 y − z = 5 ⇒ 2 x + 3 ⋅ 7 3 − 7 3 = 5 ⇒ 2 x + 7 − 7 3 = 5 ⇒ 2 x = 5 − 7 + 7 3 = − 2 + 7 3 = − 6 3 + 7 3 = 1 3 ⇒ x = 1 6 2x + 3y - z = 5 \Rightarrow 2x + 3 \cdot \frac{7}{3} - \frac{7}{3} = 5 \Rightarrow 2x + 7 - \frac{7}{3} = 5 \Rightarrow 2x = 5 - 7 + \frac{7}{3} = -2 + \frac{7}{3} = -\frac{6}{3} + \frac{7}{3} = \frac{1}{3} \Rightarrow x = \frac{1}{6} 2x+3yz=52x+33737=52x+737=52x=57+37=2+37=36+37=31x=61

解得

x = 1 6 , y = 7 3 , z = 7 3 x = \frac{1}{6}, \quad y = \frac{7}{3}, \quad z = \frac{7}{3} x=61,y=37,z=37

迭代法

迭代法通过不断逼近的方式求解线性方程组,常见的方法包括雅可比迭代法、高斯-塞德尔迭代法和松弛法等。

雅可比迭代法

将线性方程组 A x = b Ax = b Ax=b 分解为 A = D + R A = D + R A=D+R,其中 D D D 为对角矩阵, R R R 为剩余部分。迭代公式为:

x ( k + 1 ) = D − 1 ( b − R x ( k ) ) x^{(k+1)} = D^{-1}(b - Rx^{(k)}) x(k+1)=D1(bRx(k))

高斯-塞德尔迭代法

在雅可比迭代的基础上,使用最新的迭代结果进行更新,迭代公式为:

x i ( k + 1 ) = 1 a i i ( b i − ∑ j = 1 i − 1 a i j x j ( k + 1 ) − ∑ j = i + 1 n a i j x j ( k ) ) x_i^{(k+1)} = \frac{1}{a_{ii}} \left( b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) xi(k+1)=aii1(bij=1i1aijxj(k+1)j=i+1naijxj(k))

收敛条件

迭代法的收敛性取决于矩阵 A A A 的性质,通常对严格对角优势矩阵或对称正定矩阵收敛。

应用实例

使用雅可比迭代法求解线性方程组:

{ x = 1 2 ( b − y ) y = 1 3 ( a + z ) z = 1 4 ( x + y ) \begin{cases} x = \frac{1}{2}(b - y) \\ y = \frac{1}{3}(a + z) \\ z = \frac{1}{4}(x + y) \end{cases} x=21(by)y=31(a+z)z=41(x+y)

选择初始猜测 x ( 0 ) = 0 x^{(0)} = 0 x(0)=0, y ( 0 ) = 0 y^{(0)} = 0 y(0)=0, z ( 0 ) = 0 z^{(0)} = 0 z(0)=0,进行迭代计算。

非线性方程
牛顿迭代法

牛顿迭代法是一种用于求解非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0 的高效方法。其迭代公式为:

x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xnf(xn)f(xn)

步骤

  1. 选择初始猜测值 x 0 x_0 x0
  2. 计算函数值 f ( x n ) f(x_n) f(xn) 和导数 f ′ ( x n ) f'(x_n) f(xn)
  3. 更新迭代值 x n + 1 x_{n+1} xn+1
  4. 重复步骤 2-3,直到满足收敛条件。

收敛条件

  • 初始猜测值需足够接近实际根。
  • 函数在根附近应具有连续的一阶导数。

应用实例

求解方程 f ( x ) = x 2 − 2 = 0 f(x) = x^2 - 2 = 0 f(x)=x22=0 的正根。

  1. 设定初始猜测值 x 0 = 1.5 x_0 = 1.5 x0=1.5
  2. 计算 f ( x 0 ) = 1. 5 2 − 2 = 0.25 f(x_0) = 1.5^2 - 2 = 0.25 f(x0)=1.522=0.25 f ′ ( x 0 ) = 2 ⋅ 1.5 = 3 f'(x_0) = 2 \cdot 1.5 = 3 f(x0)=21.5=3
  3. 迭代更新:

x 1 = 1.5 − 0.25 3 ≈ 1.4167 x_1 = 1.5 - \frac{0.25}{3} \approx 1.4167 x1=1.530.251.4167

  1. 重复迭代,直到 ∣ x n + 1 − x n ∣ < ϵ |x_{n+1} - x_n| < \epsilon xn+1xn<ϵ

经过几次迭代,可得到 x ≈ 1.4142 x \approx 1.4142 x1.4142,接近 2 \sqrt{2} 2

二分法与割线法

二分法是一种基于连续性和介值定理的简单数值方法。适用于函数在某区间内由正变负或由负变正的情况下,逐步缩小包含根的区间。

步骤

  1. 选择区间 [ a , b ] [a, b] [a,b],满足 f ( a ) f ( b ) < 0 f(a)f(b) < 0 f(a)f(b)<0
  2. 计算中点 c = a + b 2 c = \frac{a + b}{2} c=2a+b,并计算 f ( c ) f(c) f(c)
  3. 根据符号变化确定新的区间:
    • f ( a ) f ( c ) < 0 f(a)f(c) < 0 f(a)f(c)<0,则根在 [ a , c ] [a, c] [a,c]
    • 否则,根在 [ c , b ] [c, b] [c,b]
  4. 重复步骤 2-3,直到区间长度小于预设精度。

割线法是一种利用两点来逼近根的迭代方法,避免了计算导数的过程。

迭代公式

x n + 1 = x n − f ( x n ) x n − x n − 1 f ( x n ) − f ( x n − 1 ) x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} xn+1=xnf(xn)f(xn)f(xn1)xnxn1

收敛条件

  • 割线法的收敛速度通常高于二分法,但依赖于初始猜测值的选择。

应用实例

使用二分法求解方程 f ( x ) = x 3 − x − 2 = 0 f(x) = x^3 - x - 2 = 0 f(x)=x3x2=0 的根。

  1. 选择初始区间 [ 1 , 2 ] [1, 2] [1,2],因为 f ( 1 ) = − 2 f(1) = -2 f(1)=2, f ( 2 ) = 4 f(2) = 4 f(2)=4,满足 f ( 1 ) f ( 2 ) < 0 f(1)f(2) < 0 f(1)f(2)<0
  2. 计算中点 c = 1.5 c = 1.5 c=1.5 f ( 1.5 ) = 1. 5 3 − 1.5 − 2 = − 0.875 f(1.5) = 1.5^3 - 1.5 - 2 = -0.875 f(1.5)=1.531.52=0.875
  3. 选择新的区间 [ 1.5 , 2 ] [1.5, 2] [1.5,2]
  4. 重复迭代,直至找到足够精确的根。

通过多次迭代,可得到根 x ≈ 1.521 x \approx 1.521 x1.521

第五部分:复变函数

复数及其运算

复数的定义与表示

复数是形如 z = a + b i z = a + bi z=a+bi 的数,其中 a a a b b b 为实数, i i i 是虚数单位,满足 i 2 = − 1 i^2 = -1 i2=1。复数在工程和物理中有广泛应用,如交流电路分析、信号处理、量子力学等领域。

补充说明

  • 复数集 C \mathbb{C} C 是实数集 R \mathbb{R} R 的扩展,包含所有实数(当 b = 0 b=0 b=0 时)
  • 复数运算满足交换律、结合律和分配律
  • 复数在描述旋转、振动等周期性现象时具有独特优势
复数的表示形式
  • 代数形式
    z = a + b i z = a + bi z=a+bi,其中 a a a 为实部, b b b 为虚部。

  • 几何形式
    复数可以在复平面上表示为点 ( a , b ) (a, b) (a,b),也可表示为向量。复数的模长为:
    ∣ z ∣ = a 2 + b 2 |z| = \sqrt{a^2 + b^2} z=a2+b2
    幅角为:
    θ = arg ⁡ ( z ) = tan ⁡ − 1 ( b a ) \theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) θ=arg(z)=tan1(ab)
    因此,复数的极坐标形式为:
    z = ∣ z ∣ ( cos ⁡ θ + i sin ⁡ θ ) = ∣ z ∣ e i θ z = |z| (\cos \theta + i \sin \theta) = |z| e^{i\theta} z=z(cosθ+isinθ)=zeiθ

补充说明

  • 模长 ∣ z ∣ |z| z 表示复数的大小,幅角 θ \theta θ 表示复数的方向
  • 极坐标形式在乘除法运算中特别方便
  • 欧拉公式 e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta} = \cos \theta + i \sin \theta eiθ=cosθ+isinθ 是连接指数函数和三角函数的桥梁
复数的基本运算
  • 加法与减法
    z 1 ± z 2 = ( a 1 ± a 2 ) + i ( b 1 ± b 2 ) z_1 \pm z_2 = (a_1 \pm a_2) + i(b_1 \pm b_2) z1±z2=(a1±a2)+i(b1±b2)

  • 乘法
    z 1 ⋅ z 2 = ( a 1 a 2 − b 1 b 2 ) + i ( a 1 b 2 + a 2 b 1 ) z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1) z1z2=(a1a2b1b2)+i(a1b2+a2b1)

  • 除法
    z 1 z 2 = z 1 ⋅ z 2 ‾ ∣ z 2 ∣ 2 = a 1 a 2 + b 1 b 2 a 2 2 + b 2 2 + i b 1 a 2 − a 1 b 2 a 2 2 + b 2 2 \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + i \frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2} z2z1=z22z1z2=a22+b22a1a2+b1b2+ia22+b22b1a2a1b2
    其中, z 2 ‾ = a 2 − b 2 i \overline{z_2} = a_2 - b_2 i z2=a2b2i z 2 z_2 z2 的共轭复数。

  • 幂运算
    利用德摩弗公式:
    z n = ∣ z ∣ n ( cos ⁡ n θ + i sin ⁡ n θ ) z^n = |z|^n (\cos n\theta + i \sin n\theta) zn=zn(cosnθ+isinnθ)

补充说明

  • 复数运算的几何意义:加法对应向量相加,乘法对应旋转和缩放
  • 共轭复数在计算模长和除法中起重要作用
  • 德摩弗公式是计算复数幂运算的利器

复函数

解析函数的定义与性质

解析函数是指在某开集内具有导数的复值函数。具体来说,函数 f ( z ) f(z) f(z) 在点 z 0 z_0 z0 处解析,如果在 z 0 z_0 z0 的某邻域内, f ( z ) f(z) f(z) 关于 z z z 可导。

柯西-黎曼条件
若函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + i v(x, y) f(z)=u(x,y)+iv(x,y) 在点 ( x , y ) (x, y) (x,y) 处可导,其中 z = x + i y z = x + iy z=x+iy,则必须满足:
∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} xu=yv,yu=xv

解析函数的性质

  • 解析函数在其定义域内具有无限次可导性
  • 解析函数满足柯西积分定理和柯西积分公式
  • 解析函数的实部和虚部都是调和函数
  • 解析函数的零点与极点等性质作用于复变积分的计算中
  • 解析函数具有唯一性:若两个解析函数在某个区域内相等,则在整个定义域内相等

补充说明

  • 解析函数是复变函数理论的核心概念
  • 柯西-黎曼条件是判断函数是否解析的重要准则
  • 解析函数在流体力学、电磁学等领域有重要应用

复变积分

积分路径与柯西积分定理
积分路径

复变函数的积分通常沿着复平面上的曲线(路径)进行。设 γ \gamma γ 是复平面上的一条平滑曲线, f ( z ) f(z) f(z) 是在 γ \gamma γ 上连续且在其内部解析的函数,则复积分定义为:
∫ γ f ( z ) d z = ∫ a b f ( γ ( t ) ) γ ′ ( t ) d t \int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt γf(z)dz=abf(γ(t))γ(t)dt
其中, γ : [ a , b ] → C \gamma: [a, b] \to \mathbb{C} γ:[a,b]C 是路径的参数化表示。

补充说明

  • 积分路径的方向会影响积分结果
  • 积分路径的选择应避开函数的奇点
  • 复积分可以分解为实部和虚部的线积分
柯西积分定理

定理陈述
如果函数 f ( z ) f(z) f(z) 在有向闭合曲线 γ \gamma γ 所围成的区域内解析,则:
∫ γ f ( z ) d z = 0 \int_{\gamma} f(z) dz = 0 γf(z)dz=0

柯西积分公式
对于解析函数 f ( z ) f(z) f(z),有:
f ( z 0 ) = 1 2 π i ∮ γ f ( z ) z − z 0 d z f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz f(z0)=2πi1γzz0f(z)dz

应用实例
计算函数 f ( z ) = e z f(z) = e^z f(z)=ez 在单位圆周上的积分。
由于 e z e^z ez 在整个复平面上解析,根据柯西积分定理,有:
∫ ∣ z ∣ = 1 e z d z = 0 \int_{|z|=1} e^z dz = 0 z=1ezdz=0

补充说明

  • 柯西积分定理是复变函数理论的重要基石
  • 柯西积分公式可以用来计算解析函数在任意点的值
  • 这些定理在计算复杂积分时非常有用
留数定理
定义与原理

留数定理是复变函数积分的重要工具,用于计算带有孤立奇点的函数在闭合路径上的积分。

留数的定义
对于函数 f ( z ) f(z) f(z) 在孤立奇点 z 0 z_0 z0 处的留数,记作 Res ⁡ ( f , z 0 ) \operatorname{Res}(f, z_0) Res(f,z0),等于 f ( z ) f(z) f(z) 的洛朗级数中 ( z − z 0 ) − 1 (z - z_0)^{-1} (zz0)1 项的系数。

留数定理陈述
f ( z ) f(z) f(z) 在简单闭合曲线 γ \gamma γ 的内部有有限个孤立奇点 z 1 , z 2 , … , z n z_1, z_2, \ldots, z_n z1,z2,,zn,则:
∫ γ f ( z ) d z = 2 π i ∑ k = 1 n Res ⁡ ( f , z k ) \int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k) γf(z)dz=2πik=1nRes(f,zk)

计算复杂积分的方法

利用留数定理,可以简化某些复杂积分的计算,特别是涉及实数轴上积分的情况。

应用实例
计算实数轴上的积分:
∫ − ∞ ∞ 1 x 2 + 1 d x \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx x2+11dx
解答步骤

  1. 将积分扩展到复平面,考虑函数 f ( z ) = 1 z 2 + 1 f(z) = \frac{1}{z^2 + 1} f(z)=z2+11
  2. f ( z ) f(z) f(z) z = i z = i z=i z = − i z = -i z=i 处有极点,选择上半平面的闭合路径,包含极点 z = i z = i z=i
  3. 计算留数:
    Res ⁡ ( 1 z 2 + 1 , i ) = lim ⁡ z → i ( z − i ) 1 ( z − i ) ( z + i ) = 1 2 i \operatorname{Res}\left(\frac{1}{z^2 + 1}, i\right) = \lim_{z \to i} (z - i)\frac{1}{(z - i)(z + i)} = \frac{1}{2i} Res(z2+11,i)=zilim(zi)(zi)(z+i)1=2i1
  4. 根据留数定理:
    ∫ − ∞ ∞ 1 x 2 + 1 d x = 2 π i ⋅ 1 2 i = π \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = 2\pi i \cdot \frac{1}{2i} = \pi x2+11dx=2πi2i1=π

补充说明

  • 留数定理在计算实积分、傅里叶变换和拉普拉斯变换中都有重要应用
  • 留数定理是工程数学中不可或缺的工具
  • 掌握留数计算技巧对解决复杂积分问题至关重要
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leweslyh

一块去征服星辰大海吧!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值