工程数学速记手册(上)
第一部分:微积分
一元微积分
极限与连续性
定义与基本性质
极限是分析函数在某一点附近行为的基本工具。设函数
f
(
x
)
f(x)
f(x) 在点
x
=
a
x=a
x=a 的某个去心邻域内有定义,如果存在实数
L
L
L,使得对于任意的
ϵ
>
0
\epsilon > 0
ϵ>0,存在
δ
>
0
\delta > 0
δ>0,当
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ 时,有
∣
f
(
x
)
−
L
∣
<
ϵ
|f(x) - L| < \epsilon
∣f(x)−L∣<ϵ
则称
lim
x
→
a
f
(
x
)
=
L
\lim_{x \to a} f(x) = L
x→alimf(x)=L
即函数
f
(
x
)
f(x)
f(x) 在点
x
=
a
x=a
x=a 处的极限为
L
L
L。
连续性是描述函数在某一点没有间断的性质。函数 f ( x ) f(x) f(x) 在点 x = a x=a x=a 处连续的充分必要条件是:
- 函数在点 a a a 处有定义,即 f ( a ) f(a) f(a) 存在
- 极限存在,即 lim x → a f ( x ) \lim_{x \to a} f(x) limx→af(x) 存在
- 极限值等于函数值,即
lim x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) x→alimf(x)=f(a)
极限计算方法
极限的计算可以通过多种方法实现,常用的方法包括:
-
直接代入法:适用于函数在点 a a a 处连续的情况,即
lim x → a f ( x ) = f ( a ) \lim_{x \to a} f(x) = f(a) x→alimf(x)=f(a)
例如:
lim x → 2 ( 3 x + 1 ) = 3 × 2 + 1 = 7 \lim_{x \to 2} (3x + 1) = 3 \times 2 + 1 = 7 x→2lim(3x+1)=3×2+1=7 -
因式分解法:用于处理 0 0 \frac{0}{0} 00 型未定式,通过因式分解消去公共因子后再求极限。
例如:
lim x → 1 x 2 − 1 x − 1 = lim x → 1 ( x − 1 ) ( x + 1 ) x − 1 = lim x → 1 ( x + 1 ) = 2 \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{x - 1} = \lim_{x \to 1} (x + 1) = 2 x→1limx−1x2−1=x→1limx−1(x−1)(x+1)=x→1lim(x+1)=2 -
有理化法:适用于含有根号的极限,通过有理化分子或分母来消除根号。
例如:
lim x → 0 x + 1 − 1 x = lim x → 0 ( x + 1 − 1 ) ( x + 1 + 1 ) x ( x + 1 + 1 ) = lim x → 0 x x ( x + 1 + 1 ) = 1 2 \lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x} = \lim_{x \to 0} \frac{(\sqrt{x + 1} - 1)(\sqrt{x + 1} + 1)}{x(\sqrt{x + 1} + 1)} = \lim_{x \to 0} \frac{x}{x(\sqrt{x + 1} + 1)} = \frac{1}{2} x→0limxx+1−1=x→0limx(x+1+1)(x+1−1)(x+1+1)=x→0limx(x+1+1)x=21 -
洛必达法则:当极限形式为 0 0 \frac{0}{0} 00 或 ∞ ∞ \frac{\infty}{\infty} ∞∞ 时,可以对分子和分母分别求导后再求极限。
例如:
lim x → 0 sin x x = lim x → 0 cos x 1 = 1 \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1 x→0limxsinx=x→0lim1cosx=1 -
夹逼定理:当函数 f ( x ) f(x) f(x) 被两个函数 g ( x ) g(x) g(x) 和 h ( x ) h(x) h(x) 夹逼,且 lim x → a g ( x ) = lim x → a h ( x ) = L \lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L limx→ag(x)=limx→ah(x)=L,则 lim x → a f ( x ) = L \lim_{x \to a} f(x) = L limx→af(x)=L
导数与微分
导数定义及几何意义
导数是描述函数变化率的工具。函数
f
(
x
)
f(x)
f(x) 在点
x
=
a
x=a
x=a 处的导数定义为:
f
′
(
a
)
=
lim
h
→
0
f
(
a
+
h
)
−
f
(
a
)
h
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}
f′(a)=h→0limhf(a+h)−f(a)
几何上,导数
f
′
(
a
)
f'(a)
f′(a) 表示函数
f
(
x
)
f(x)
f(x) 在点
x
=
a
x=a
x=a 处切线的斜率。
导数的计算规则与应用
导数的计算可通过以下规则进行:
- 幂函数法则:
d d x x n = n x n − 1 \frac{d}{dx} x^n = n x^{n-1} dxdxn=nxn−1 - 和差法则:
d d x [ f ( x ) ± g ( x ) ] = f ′ ( x ) ± g ′ ( x ) \frac{d}{dx} [f(x) \pm g(x)] = f'(x) \pm g'(x) dxd[f(x)±g(x)]=f′(x)±g′(x) - 乘积法则:
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) dxd[f(x)g(x)]=f′(x)g(x)+f(x)g′(x) - 商法则:
d d x [ f ( x ) g ( x ) ] = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) [ g ( x ) ] 2 \frac{d}{dx} \left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2} dxd[g(x)f(x)]=[g(x)]2f′(x)g(x)−f(x)g′(x) - 链式法则:
d d x f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) dxdf(g(x))=f′(g(x))⋅g′(x)
应用实例:
求函数
f
(
x
)
=
x
3
sin
x
f(x) = x^3 \sin x
f(x)=x3sinx 的导数:
f
′
(
x
)
=
d
d
x
(
x
3
)
⋅
sin
x
+
x
3
⋅
d
d
x
(
sin
x
)
=
3
x
2
sin
x
+
x
3
cos
x
f'(x) = \frac{d}{dx} (x^3) \cdot \sin x + x^3 \cdot \frac{d}{dx} (\sin x) = 3x^2 \sin x + x^3 \cos x
f′(x)=dxd(x3)⋅sinx+x3⋅dxd(sinx)=3x2sinx+x3cosx
积分
不定积分与定积分
积分是导数的逆运算,分为不定积分和定积分。
-
不定积分:表示所有原函数的集合,形式为:
∫ f ( x ) d x = F ( x ) + C \int f(x) \, dx = F(x) + C ∫f(x)dx=F(x)+C
其中, F ′ ( x ) = f ( x ) F'(x) = f(x) F′(x)=f(x), C C C 为任意常数。 -
定积分:表示函数在区间 [ a , b ] [a, b] [a,b] 上的累积量,常用于计算面积、体积等。定义为:
∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x) \, dx = F(b) - F(a) ∫abf(x)dx=F(b)−F(a)
其中, F ( x ) F(x) F(x) 是 f ( x ) f(x) f(x) 的一个原函数。
积分技巧与应用
积分的计算可以通过多种技巧实现,常用的方法包括:
-
直接积分法:利用基本积分公式进行积分。
例如:
∫ x 2 d x = x 3 3 + C \int x^2 \, dx = \frac{x^3}{3} + C ∫x2dx=3x3+C -
分部积分法:适用于两个函数的乘积积分,公式为:
∫ u d v = u v − ∫ v d u \int u \, dv = uv - \int v \, du ∫udv=uv−∫vdu
例如:
∫ x e x d x = x e x − ∫ e x d x = x e x − e x + C \int x e^x \, dx = x e^x - \int e^x \, dx = x e^x - e^x + C ∫xexdx=xex−∫exdx=xex−ex+C -
三角代换法:用于含有根号的积分,通过引入三角函数进行代换。
例如:
∫ d x a 2 − x 2 = arcsin ( x a ) + C \int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \left( \frac{x}{a} \right) + C ∫a2−x2dx=arcsin(ax)+C -
有理化法:类似于极限中的有理化,通过消除根号简化积分。
例如:
∫ x x + 1 d x = 2 x − 2 ln ( x + 1 ) + C \int \frac{\sqrt{x}}{x + 1} \, dx = 2\sqrt{x} - 2\ln(\sqrt{x} + 1) + C ∫x+1xdx=2x−2ln(x+1)+C
应用实例:
计算函数
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2 在区间
[
0
,
3
]
[0, 3]
[0,3] 上的定积分:
∫
0
3
x
2
d
x
=
[
x
3
3
]
0
3
=
27
3
−
0
=
9
\int_{0}^{3} x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^3 = \frac{27}{3} - 0 = 9
∫03x2dx=[3x3]03=327−0=9
多元微积分
偏导数与梯度
偏导数的定义与计算
对于多元函数
f
(
x
,
y
,
…
)
f(x, y, \dots)
f(x,y,…),偏导数是对其中一个变量求导时,其他变量视为常数。以二维函数为例:
∂
f
∂
x
=
lim
h
→
0
f
(
x
+
h
,
y
)
−
f
(
x
,
y
)
h
\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}
∂x∂f=h→0limhf(x+h,y)−f(x,y)
∂
f
∂
y
=
lim
h
→
0
f
(
x
,
y
+
h
)
−
f
(
x
,
y
)
h
\frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}
∂y∂f=h→0limhf(x,y+h)−f(x,y)
梯度向量及其应用
梯度向量是由函数的所有偏导数组成的向量,表示函数在各个方向上的变化率:
∇
f
=
(
∂
f
∂
x
,
∂
f
∂
y
,
…
)
\nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \dots \right)
∇f=(∂x∂f,∂y∂f,…)
梯度向量的方向表示函数增长最快的方向,其长度表示变化率的大小。
应用实例:
对于函数
f
(
x
,
y
)
=
x
2
+
y
2
f(x, y) = x^2 + y^2
f(x,y)=x2+y2,梯度向量为:
∇
f
=
(
2
x
,
2
y
)
\nabla f = (2x, 2y)
∇f=(2x,2y)
在点
(
1
,
1
)
(1,1)
(1,1) 处,梯度向量为
(
2
,
2
)
(2, 2)
(2,2),指向函数值增长最快的方向。
多重积分
二重积分与三重积分
多重积分扩展了一元积分的概念,用于计算多变量函数在区域上的累积量。二重积分用于二维区域,三重积分用于三维区域。
例如,计算函数
f
(
x
,
y
)
=
x
y
f(x, y) = xy
f(x,y)=xy 在矩形区域
[
0
,
1
]
×
[
0
,
2
]
[0,1] \times [0,2]
[0,1]×[0,2] 上的二重积分:
∫
0
1
∫
0
2
x
y
d
y
d
x
=
∫
0
1
[
x
y
2
2
]
0
2
d
x
=
∫
0
1
4
x
2
d
x
=
∫
0
1
2
x
d
x
=
[
x
2
]
0
1
=
1
\int_{0}^{1} \int_{0}^{2} xy \, dy \, dx = \int_{0}^{1} \left[ \frac{xy^2}{2} \right]_0^2 dx = \int_{0}^{1} \frac{4x}{2} dx = \int_{0}^{1} 2x \, dx = \left[ x^2 \right]_0^1 = 1
∫01∫02xydydx=∫01[2xy2]02dx=∫0124xdx=∫012xdx=[x2]01=1
变换积分方法
变换积分通过坐标变换简化积分区域或被积函数,包括极坐标、球坐标等。
极坐标变换:
x
=
r
cos
θ
,
y
=
r
sin
θ
x = r \cos \theta, \quad y = r \sin \theta
x=rcosθ,y=rsinθ
对应的面积元素为
d
A
=
r
d
r
d
θ
dA = r \, dr \, d\theta
dA=rdrdθ。
应用实例:
计算单位圆内的面积:
∫
0
2
π
∫
0
1
r
d
r
d
θ
=
∫
0
2
π
[
r
2
2
]
0
1
d
θ
=
∫
0
2
π
1
2
d
θ
=
π
\int_{0}^{2\pi} \int_{0}^{1} r \, dr \, d\theta = \int_{0}^{2\pi} \left[ \frac{r^2}{2} \right]_0^1 d\theta = \int_{0}^{2\pi} \frac{1}{2} d\theta = \pi
∫02π∫01rdrdθ=∫02π[2r2]01dθ=∫02π21dθ=π
向量微积分
散度与旋度
对于向量场 F = ( P , Q , R ) \mathbf{F} = (P, Q, R) F=(P,Q,R),散度和旋度是描述向量场性质的重要概念。
散度定义为:
∇
⋅
F
=
∂
P
∂
x
+
∂
Q
∂
y
+
∂
R
∂
z
\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}
∇⋅F=∂x∂P+∂y∂Q+∂z∂R
散度反映了向量场源或汇的强度。
旋度定义为:
∇
×
F
=
(
∂
R
∂
y
−
∂
Q
∂
z
,
∂
P
∂
z
−
∂
R
∂
x
,
∂
Q
∂
x
−
∂
P
∂
y
)
\nabla \times \mathbf{F} = \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right)
∇×F=(∂y∂R−∂z∂Q,∂z∂P−∂x∂R,∂x∂Q−∂y∂P)
旋度描述了向量场的旋转性质。
格林公式、高斯定理与斯托克斯公式
这些定理将微积分与几何联系起来,用于计算曲线或曲面的积分。
-
格林公式(二维):
∮ C ( P d x + Q d y ) = ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y \oint_{C} (P \, dx + Q \, dy) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy ∮C(Pdx+Qdy)=∬D(∂x∂Q−∂y∂P)dxdy
将曲线积分转化为区域积分。 -
高斯定理(散度定理)(三维):
∬ S F ⋅ n d S = ∭ V ∇ ⋅ F d V \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint_{V} \nabla \cdot \mathbf{F} \, dV ∬SF⋅ndS=∭V∇⋅FdV
将曲面积分转化为体积分。 -
斯托克斯公式(旋度定理):
∮ C F ⋅ d r = ∬ S ( ∇ × F ) ⋅ n d S \oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS ∮CF⋅dr=∬S(∇×F)⋅ndS
将曲线积分转化为曲面积分。
应用实例:
利用格林公式计算平面区域
D
D
D 上的面积:
设
P
=
−
y
2
P = -\frac{y}{2}
P=−2y,
Q
=
x
2
Q = \frac{x}{2}
Q=2x,则
∬
D
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
d
y
=
∬
D
(
1
2
+
1
2
)
d
x
d
y
=
∬
D
1
d
x
d
y
=
Area
(
D
)
\iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx \, dy = \iint_{D} \left( \frac{1}{2} + \frac{1}{2} \right) dx \, dy = \iint_{D} 1 \, dx \, dy = \text{Area}(D)
∬D(∂x∂Q−∂y∂P)dxdy=∬D(21+21)dxdy=∬D1dxdy=Area(D)
根据格林公式,有
∮
C
(
−
y
2
d
x
+
x
2
d
y
)
=
Area
(
D
)
\oint_{C} \left( -\frac{y}{2} dx + \frac{x}{2} dy \right) = \text{Area}(D)
∮C(−2ydx+2xdy)=Area(D)
第二部分:线性代数
向量与矩阵
向量空间
向量的线性组合与基
向量的线性组合是向量空间中最基本的运算之一。设有向量集合
{
v
1
,
v
2
,
…
,
v
n
}
\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \}
{v1,v2,…,vn},任意向量
v
\mathbf{v}
v 可表示为
v
=
c
1
v
1
+
c
2
v
2
+
⋯
+
c
n
v
n
\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \cdots + c_n\mathbf{v}_n
v=c1v1+c2v2+⋯+cnvn
其中,
c
1
,
c
2
,
…
,
c
n
c_1, c_2, \ldots, c_n
c1,c2,…,cn 为标量。线性组合的概念是理解向量空间结构的基础。
基是向量空间的核心概念,具有以下两个基本性质:
- 线性无关性:任何一个基向量都不能表示为其他基向量的线性组合。
- 生成性:任意向量都可以表示为基向量的线性组合。
基的选择不是唯一的,但不同基之间可以通过可逆线性变换相互转换。基的维数决定了向量空间的维数。
子空间与维数
子空间是向量空间的一个重要概念,它满足以下三个条件:
- 包含零向量。
- 对于任意向量 u , v \mathbf{u}, \mathbf{v} u,v 属于子空间, u + v \mathbf{u} + \mathbf{v} u+v 也属于子空间。
- 对于任意向量 u \mathbf{u} u 属于子空间和标量 c c c,标量乘积 c u c\mathbf{u} cu 也属于子空间。
维数是向量空间的重要特征,它等于基向量的数量。例如:
- R n \mathbb{R}^n Rn 的维数为 n n n
- 多项式空间 P n P_n Pn 的维数为 n + 1 n+1 n+1
- 矩阵空间 M m × n M_{m \times n} Mm×n 的维数为 m × n m \times n m×n
矩阵运算
基本矩阵运算
矩阵运算是线性代数的基础,主要包括以下运算:
- 矩阵加法:两个同型矩阵对应元素相加,即
( A + B ) i j = A i j + B i j (A + B)_{ij} = A_{ij} + B_{ij} (A+B)ij=Aij+Bij - 标量乘法:矩阵的每个元素乘以一个标量
c
c
c,即
( c A ) i j = c ⋅ A i j (cA)_{ij} = c \cdot A_{ij} (cA)ij=c⋅Aij - 矩阵乘法:若
A
A
A 是
m
×
n
m \times n
m×n 矩阵,
B
B
B 是
n
×
p
n \times p
n×p 矩阵,则乘积
A
B
AB
AB 是一个
m
×
p
m \times p
m×p 矩阵,其元素为
( A B ) i j = ∑ k = 1 n A i k B k j (AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} (AB)ij=k=1∑nAikBkj
矩阵乘法具有结合律但不满足交换律。
矩阵的秩与逆
-
矩阵的秩:矩阵 A A A 的秩是其列向量(或行向量)的线性无关的最大数目,记为 rank ( A ) \text{rank}(A) rank(A)。秩反映了矩阵的线性相关性和满秩性。重要性质包括:
- rank ( A ) ≤ min ( m , n ) \text{rank}(A) \leq \min(m,n) rank(A)≤min(m,n)
- rank ( A B ) ≤ min ( rank ( A ) , rank ( B ) ) \text{rank}(AB) \leq \min(\text{rank}(A), \text{rank}(B)) rank(AB)≤min(rank(A),rank(B))
-
矩阵的逆:只有方阵且满秩的矩阵才有逆矩阵。若 A A A 是 n × n n \times n n×n 矩阵,存在矩阵 A − 1 A^{-1} A−1 使得
A A − 1 = A − 1 A = I n AA^{-1} = A^{-1}A = I_n AA−1=A−1A=In
其中, I n I_n In 是 n n n 阶单位矩阵。逆矩阵的存在性与矩阵的行列式相关,即 det ( A ) ≠ 0 \text{det}(A) \neq 0 det(A)=0。
特征值与特征向量
特征值问题
特征值与特征向量的定义
对于一个
n
×
n
n \times n
n×n 矩阵
A
A
A,如果存在非零向量
v
\mathbf{v}
v 和标量
λ
\lambda
λ,使得
A
v
=
λ
v
A\mathbf{v} = \lambda \mathbf{v}
Av=λv
则称
λ
\lambda
λ 为
A
A
A 的特征值,
v
\mathbf{v}
v 为对应的特征向量。特征值和特征向量反映了矩阵的本质特征。
计算方法与性质
-
计算方法:求解特征值需要解特征方程
det ( A − λ I ) = 0 \text{det}(A - \lambda I) = 0 det(A−λI)=0
方程的解 λ \lambda λ 即为矩阵 A A A 的特征值。求得特征值后,将其代入 ( A − λ I ) v = 0 (A - \lambda I)\mathbf{v} = 0 (A−λI)v=0 求解对应的特征向量。 -
重要性质:
- 一个 n × n n \times n n×n 矩阵最多有 n n n 个特征值(包括重根)。
- 实对称矩阵的特征值均为实数,且具有正交的特征向量。
- 特征值的和等于矩阵的迹,即
∑ i = 1 n λ i = trace ( A ) \sum_{i=1}^{n} \lambda_i = \text{trace}(A) i=1∑nλi=trace(A) - 特征值的积等于矩阵的行列式,即
∏ i = 1 n λ i = det ( A ) \prod_{i=1}^{n} \lambda_i = \text{det}(A) i=1∏nλi=det(A)
对角化与规范形
矩阵对角化条件
一个矩阵
A
A
A 可以对角化,当且仅当其拥有
n
n
n 个线性无关的特征向量。即存在一个可逆矩阵
P
P
P 和对角矩阵
D
D
D,使得
A
=
P
D
P
−
1
A = PDP^{-1}
A=PDP−1
其中,对角矩阵
D
D
D 的对角元素为
A
A
A 的特征值。对角化可以简化矩阵的运算和分析。
相似变换与规范形
-
相似变换:矩阵 A A A 和 B B B 称为相似的,如果存在可逆矩阵 P P P 满足
B = P − 1 A P B = P^{-1}AP B=P−1AP
相似矩阵具有相同的特征值、行列式和迹。 -
规范形:将矩阵通过一系列相似变换转化为简化形式,如对角矩阵或约旦标准形,以便于分析和计算。对于可对角化的矩阵,其规范形即为对角矩阵;对于不可对角化的矩阵,则需要使用约旦标准形。
实例应用:
考虑矩阵
A
=
(
4
1
2
3
)
A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}
A=(4213)
求其特征值和特征向量。
-
求特征值:
det ( A − λ I ) = ∣ 4 − λ 1 2 3 − λ ∣ = ( 4 − λ ) ( 3 − λ ) − 2 = λ 2 − 7 λ + 10 = 0 \text{det}(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 1 \\ 2 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10 = 0 det(A−λI)= 4−λ213−λ =(4−λ)(3−λ)−2=λ2−7λ+10=0
解得 λ = 5 , 2 \lambda = 5, 2 λ=5,2。 -
求特征向量:
对于 λ = 5 \lambda = 5 λ=5:
( A − 5 I ) v = 0 ⇒ ( − 1 1 2 − 2 ) v = 0 ⇒ v = ( 1 1 ) (A - 5I)\mathbf{v} = 0 \Rightarrow \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (A−5I)v=0⇒(−121−2)v=0⇒v=(11)
对于 λ = 2 \lambda = 2 λ=2:
( A − 2 I ) v = 0 ⇒ ( 2 1 2 1 ) v = 0 ⇒ v = ( − 0.5 1 ) (A - 2I)\mathbf{v} = 0 \Rightarrow \begin{pmatrix} 2 & 1 \\ 2 & 1 \end{pmatrix} \mathbf{v} = 0 \Rightarrow \mathbf{v} = \begin{pmatrix} -0.5 \\ 1 \end{pmatrix} (A−2I)v=0⇒(2211)v=0⇒v=(−0.51)
因此,矩阵 A A A 可对角化为
P = ( 1 − 0.5 1 1 ) , D = ( 5 0 0 2 ) P = \begin{pmatrix} 1 & -0.5 \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 5 & 0 \\ 0 & 2 \end{pmatrix} P=(11−0.51),D=(5002)
满足 A = P D P − 1 A = PDP^{-1} A=PDP−1。
第三部分:常微分方程
一阶微分方程
可分离方程
定义与性质
可分离方程是一类特殊的一阶微分方程,其特点是可以将自变量和因变量分别置于方程的两侧。一般形式为:
d
y
d
x
=
g
(
x
)
h
(
y
)
\frac{dy}{dx} = g(x)h(y)
dxdy=g(x)h(y)
其中,
g
(
x
)
g(x)
g(x) 和
h
(
y
)
h(y)
h(y) 分别是关于
x
x
x 和
y
y
y 的连续函数。这类方程在物理、化学、生物等领域有广泛应用,如人口增长模型、放射性衰变等。
求解方法
- 分离变量:将方程改写为
1 h ( y ) d y = g ( x ) d x \frac{1}{h(y)} dy = g(x) dx h(y)1dy=g(x)dx - 两边积分:
∫ 1 h ( y ) d y = ∫ g ( x ) d x + C \int \frac{1}{h(y)} dy = \int g(x) dx + C ∫h(y)1dy=∫g(x)dx+C
其中, C C C 为积分常数。 - 解出 y y y 关于 x x x 的显式表达式(如果可能)。
应用实例
求解微分方程:
d
y
d
x
=
x
y
\frac{dy}{dx} = xy
dxdy=xy
解:
- 分离变量:
1 y d y = x d x \frac{1}{y} dy = x dx y1dy=xdx - 两边积分:
ln ∣ y ∣ = x 2 2 + C \ln |y| = \frac{x^2}{2} + C ln∣y∣=2x2+C - 解得通解:
y = C e x 2 2 y = Ce^{\frac{x^2}{2}} y=Ce2x2
其中, C C C 为任意常数。
线性一阶方程
定义与标准形式
线性一阶微分方程的标准形式为:
d
y
d
x
+
P
(
x
)
y
=
Q
(
x
)
\frac{dy}{dx} + P(x)y = Q(x)
dxdy+P(x)y=Q(x)
其中,
P
(
x
)
P(x)
P(x) 和
Q
(
x
)
Q(x)
Q(x) 是已知的连续函数。这类方程在电路分析、热传导等领域有重要应用。
积分因子法
- 计算积分因子:
μ ( x ) = e ∫ P ( x ) d x \mu(x) = e^{\int P(x) dx} μ(x)=e∫P(x)dx - 将方程乘以积分因子:
μ ( x ) d y d x + μ ( x ) P ( x ) y = μ ( x ) Q ( x ) \mu(x)\frac{dy}{dx} + \mu(x)P(x)y = \mu(x)Q(x) μ(x)dxdy+μ(x)P(x)y=μ(x)Q(x) - 左边可写成导数形式:
d d x [ μ ( x ) y ] = μ ( x ) Q ( x ) \frac{d}{dx}\left[\mu(x)y\right] = \mu(x)Q(x) dxd[μ(x)y]=μ(x)Q(x) - 两边积分得通解:
y = 1 μ ( x ) ( ∫ μ ( x ) Q ( x ) d x + C ) y = \frac{1}{\mu(x)}\left(\int \mu(x)Q(x) dx + C\right) y=μ(x)1(∫μ(x)Q(x)dx+C)
应用实例
求解微分方程:
d
y
d
x
+
2
y
=
e
−
x
\frac{dy}{dx} + 2y = e^{-x}
dxdy+2y=e−x
解:
- 计算积分因子:
μ ( x ) = e ∫ 2 d x = e 2 x \mu(x) = e^{\int 2 dx} = e^{2x} μ(x)=e∫2dx=e2x - 将方程乘以积分因子:
e 2 x d y d x + 2 e 2 x y = e x e^{2x}\frac{dy}{dx} + 2e^{2x}y = e^{x} e2xdxdy+2e2xy=ex - 左边为导数形式:
d d x [ e 2 x y ] = e x \frac{d}{dx}\left[e^{2x}y\right] = e^{x} dxd[e2xy]=ex - 两边积分得:
e 2 x y = e x + C e^{2x}y = e^{x} + C e2xy=ex+C - 解得通解:
y = e − x + C e − 2 x y = e^{-x} + Ce^{-2x} y=e−x+Ce−2x
其中, C C C 为任意常数。
高阶微分方程
线性常系数方程
定义与标准形式
线性常系数微分方程的一般形式为:
a
n
d
n
y
d
x
n
+
a
n
−
1
d
n
−
1
y
d
x
n
−
1
+
⋯
+
a
1
d
y
d
x
+
a
0
y
=
0
a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0
andxndny+an−1dxn−1dn−1y+⋯+a1dxdy+a0y=0
其中,
a
i
a_i
ai 为常数。这类方程在机械振动、电路分析等领域有重要应用。
特征方程法
- 假设解的形式为
y
=
e
λ
x
y = e^{\lambda x}
y=eλx,代入方程得到特征方程:
a n λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 = 0 a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0 = 0 anλn+an−1λn−1+⋯+a1λ+a0=0 - 根据特征根的不同情况构造通解:
- 单实根 λ \lambda λ: C e λ x Ce^{\lambda x} Ceλx
- 重实根 λ \lambda λ(重数 k k k): ( C 1 + C 2 x + ⋯ + C k x k − 1 ) e λ x (C_1 + C_2 x + \dots + C_k x^{k-1}) e^{\lambda x} (C1+C2x+⋯+Ckxk−1)eλx
- 共轭复根 α ± β i \alpha \pm \beta i α±βi: e α x ( C 1 cos β x + C 2 sin β x ) e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x) eαx(C1cosβx+C2sinβx)
非齐次方程
常数变易法
- 求解对应的齐次方程,得到通解 y h y_h yh
- 假设特解 y p y_p yp 的形式,其中包含待定函数
- 将 y p y_p yp 代入原方程,确定待定函数
- 通解为:
y = y h + y p y = y_h + y_p y=yh+yp
特解选择原则
- 若 Q ( x ) Q(x) Q(x) 为多项式,假设特解为同次多项式
- 若 Q ( x ) Q(x) Q(x) 为指数函数,假设特解为同底指数函数
- 若 Q ( x ) Q(x) Q(x) 为三角函数,假设特解为同频率的三角函数
- 若假设形式与齐次解重复,需乘以 x x x 的适当幂次
应用实例
求解微分方程:
y
′
′
−
3
y
′
+
2
y
=
e
x
y'' - 3y' + 2y = e^{x}
y′′−3y′+2y=ex
解:
- 齐次方程的特征方程:
λ 2 − 3 λ + 2 = 0 ⇒ λ = 1 , 2 \lambda^2 - 3\lambda + 2 = 0 \Rightarrow \lambda = 1, 2 λ2−3λ+2=0⇒λ=1,2 - 齐次通解:
y h = C 1 e x + C 2 e 2 x y_h = C_1 e^{x} + C_2 e^{2x} yh=C1ex+C2e2x - 假设特解(因
e
x
e^x
ex 与齐次解重复,乘以
x
x
x):
y p = A x e x y_p = Ax e^{x} yp=Axex - 代入原方程求得 A = − 1 A = -1 A=−1
- 最终通解:
y = C 1 e x + C 2 e 2 x − x e x y = C_1 e^{x} + C_2 e^{2x} - x e^{x} y=C1ex+C2e2x−xex
其中, C 1 , C 2 C_1, C_2 C1,C2 为任意常数。
第四部分:数值方法
数值方法是通过近似计算来解决数学问题的技术,在工程和科学计算中具有广泛应用。本章将系统介绍数值逼近、数值积分与微分、以及方程数值解的基本方法。
数值逼近
数值逼近是通过已知的离散数据点来估计未知函数值的方法,主要包括插值和拟合两种基本方法。
插值与拟合
拉格朗日插值
拉格朗日插值法是一种通过已知数据点构建多项式的方法,用于在这些点之间进行插值估计。给定 n + 1 n+1 n+1 个数据点 ( x 0 , y 0 ) , ( x 1 , y 1 ) , … , ( x n , y n ) (x_0, y_0), (x_1, y_1), \ldots, (x_n, y_n) (x0,y0),(x1,y1),…,(xn,yn),拉格朗日插值多项式 P n ( x ) P_n(x) Pn(x) 的形式为:
P n ( x ) = ∑ i = 0 n y i L i ( x ) P_n(x) = \sum_{i=0}^{n} y_i L_i(x) Pn(x)=i=0∑nyiLi(x)
其中, L i ( x ) L_i(x) Li(x) 是第 i i i 个拉格朗日基函数,定义为:
L i ( x ) = ∏ 0 ≤ j ≤ n j ≠ i x − x j x i − x j L_i(x) = \prod_{\substack{0 \leq j \leq n \\ j \neq i}} \frac{x - x_j}{x_i - x_j} Li(x)=0≤j≤nj=i∏xi−xjx−xj
性质与优点:
- 唯一性:通过 n + 1 n+1 n+1 个点的插值多项式是唯一的
- 简便性:不需要解线性方程组即可直接构造插值多项式
- 局限性:当插值点较多时,可能出现Runge现象,导致插值多项式在区间端点附近剧烈振荡
应用实例:
假设有三个数据点 ( 1 , 2 ) (1, 2) (1,2), ( 2 , 3 ) (2, 3) (2,3), ( 4 , 1 ) (4, 1) (4,1),求拉格朗日插值多项式。
- 计算基函数:
L 0 ( x ) = ( x − 2 ) ( x − 4 ) ( 1 − 2 ) ( 1 − 4 ) = ( x − 2 ) ( x − 4 ) 3 L_0(x) = \frac{(x - 2)(x - 4)}{(1 - 2)(1 - 4)} = \frac{(x - 2)(x - 4)}{3} L0(x)=(1−2)(1−4)(x−2)(x−4)=3(x−2)(x−4)
L 1 ( x ) = ( x − 1 ) ( x − 4 ) ( 2 − 1 ) ( 2 − 4 ) = ( x − 1 ) ( x − 4 ) − 2 L_1(x) = \frac{(x - 1)(x - 4)}{(2 - 1)(2 - 4)} = \frac{(x - 1)(x - 4)}{-2} L1(x)=(2−1)(2−4)(x−1)(x−4)=−2(x−1)(x−4)
L 2 ( x ) = ( x − 1 ) ( x − 2 ) ( 4 − 1 ) ( 4 − 2 ) = ( x − 1 ) ( x − 2 ) 6 L_2(x) = \frac{(x - 1)(x - 2)}{(4 - 1)(4 - 2)} = \frac{(x - 1)(x - 2)}{6} L2(x)=(4−1)(4−2)(x−1)(x−2)=6(x−1)(x−2)
- 构建插值多项式:
P 2 ( x ) = 2 L 0 ( x ) + 3 L 1 ( x ) + 1 L 2 ( x ) P_2(x) = 2L_0(x) + 3L_1(x) + 1L_2(x) P2(x)=2L0(x)+3L1(x)+1L2(x)
P 2 ( x ) = 2 ⋅ ( x − 2 ) ( x − 4 ) 3 + 3 ⋅ ( x − 1 ) ( x − 4 ) − 2 + 1 ⋅ ( x − 1 ) ( x − 2 ) 6 P_2(x) = 2 \cdot \frac{(x - 2)(x - 4)}{3} + 3 \cdot \frac{(x - 1)(x - 4)}{-2} + 1 \cdot \frac{(x - 1)(x - 2)}{6} P2(x)=2⋅3(x−2)(x−4)+3⋅−2(x−1)(x−4)+1⋅6(x−1)(x−2)
- 化简得:
P 2 ( x ) = 2 ( x 2 − 6 x + 8 ) 3 − 3 ( x 2 − 5 x + 4 ) 2 + x 2 − 3 x + 2 6 P_2(x) = \frac{2(x^2 - 6x + 8)}{3} - \frac{3(x^2 - 5x + 4)}{2} + \frac{x^2 - 3x + 2}{6} P2(x)=32(x2−6x+8)−23(x2−5x+4)+6x2−3x+2
经过计算,最终得到插值多项式 P 2 ( x ) = − 1 2 x 2 + 7 2 x − 2 P_2(x) = -\frac{1}{2}x^2 + \frac{7}{2}x - 2 P2(x)=−21x2+27x−2。
最小二乘拟合
最小二乘拟合法用于在存在误差的数据点中寻找最佳拟合曲线,使得拟合曲线与数据点之间的误差平方和最小。对于线性最小二乘拟合,假设拟合曲线为:
y = a x + b y = ax + b y=ax+b
给定数据点 ( x i , y i ) (x_i, y_i) (xi,yi),误差平方和 S S S 为:
S = ∑ i = 1 m ( y i − ( a x i + b ) ) 2 S = \sum_{i=1}^{m} (y_i - (ax_i + b))^2 S=i=1∑m(yi−(axi+b))2
为了最小化 S S S,对 a a a 和 b b b 求偏导并令其为零,得到正规方程:
{ ∑ i = 1 m y i = a ∑ i = 1 m x i + b m ∑ i = 1 m x i y i = a ∑ i = 1 m x i 2 + b ∑ i = 1 m x i \begin{cases} \sum_{i=1}^{m} y_i = a \sum_{i=1}^{m} x_i + b m \\ \sum_{i=1}^{m} x_i y_i = a \sum_{i=1}^{m} x_i^2 + b \sum_{i=1}^{m} x_i \end{cases} {∑i=1myi=a∑i=1mxi+bm∑i=1mxiyi=a∑i=1mxi2+b∑i=1mxi
通过解这组方程,可以得到最佳拟合直线的参数 a a a 和 b b b。
应用实例:
假设有数据点 ( 1 , 2 ) (1, 2) (1,2), ( 2 , 3 ) (2, 3) (2,3), ( 3 , 5 ) (3, 5) (3,5),使用最小二乘法拟合直线。
- 计算各项和:
∑ y i = 2 + 3 + 5 = 10 \sum y_i = 2 + 3 + 5 = 10 ∑yi=2+3+5=10
∑ x i = 1 + 2 + 3 = 6 \sum x_i = 1 + 2 + 3 = 6 ∑xi=1+2+3=6
∑ x i y i = 1 ⋅ 2 + 2 ⋅ 3 + 3 ⋅ 5 = 2 + 6 + 15 = 23 \sum x_i y_i = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 5 = 2 + 6 + 15 = 23 ∑xiyi=1⋅2+2⋅3+3⋅5=2+6+15=23
∑ x i 2 = 1 2 + 2 2 + 3 2 = 1 + 4 + 9 = 14 \sum x_i^2 = 1^2 + 2^2 + 3^2 = 1 + 4 + 9 = 14 ∑xi2=12+22+32=1+4+9=14
- 代入正规方程:
{ 10 = 6 a + 3 b 23 = 14 a + 6 b \begin{cases} 10 = 6a + 3b \\ 23 = 14a + 6b \end{cases} {10=6a+3b23=14a+6b
- 解得:
a = 3 2 = 1.5 , b = 1 3 ≈ 0.3333 a = \frac{3}{2} = 1.5, \quad b = \frac{1}{3} \approx 0.3333 a=23=1.5,b=31≈0.3333
因此,最佳拟合直线为:
y = 1.5 x + 0.3333 y = 1.5x + 0.3333 y=1.5x+0.3333
数值积分与导数
梯形法则与辛普森法则
梯形法则是一种用于数值积分的基本方法,通过将积分区间分割成若干梯形并求其面积之和来近似积分值。对于函数 f ( x ) f(x) f(x) 在区间 [ a , b ] [a, b] [a,b] 上的积分:
∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_{a}^{b} f(x) dx \approx \frac{b - a}{2} [f(a) + f(b)] ∫abf(x)dx≈2b−a[f(a)+f(b)]
辛普森法则利用抛物线更精确地近似曲线下的面积,适用于函数在区间内平滑变化的情况:
∫ a b f ( x ) d x ≈ b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] \int_{a}^{b} f(x) dx \approx \frac{b - a}{6} [f(a) + 4f\left(\frac{a + b}{2}\right) + f(b)] ∫abf(x)dx≈6b−a[f(a)+4f(2a+b)+f(b)]
比较与选择:
- 精度:辛普森法则的精度通常高于梯形法则,尤其是当函数具有较高的曲率时
- 计算复杂度:辛普森法则需要计算中点的函数值,计算量略高于梯形法则
- 适用性:梯形法则适用于任意可积函数,而辛普森法则要求函数在积分区间内足够光滑
应用实例:
计算函数 f ( x ) = sin ( x ) f(x) = \sin(x) f(x)=sin(x) 在区间 [ 0 , π ] [0, \pi] [0,π] 上的积分。
- 梯形法则:
∫ 0 π sin ( x ) d x ≈ π − 0 2 [ sin ( 0 ) + sin ( π ) ] = π 2 ( 0 + 0 ) = 0 \int_{0}^{\pi} \sin(x) dx \approx \frac{\pi - 0}{2} [\sin(0) + \sin(\pi)] = \frac{\pi}{2} (0 + 0) = 0 ∫0πsin(x)dx≈2π−0[sin(0)+sin(π)]=2π(0+0)=0
明显不准确。
- 辛普森法则:
∫ 0 π sin ( x ) d x ≈ π 6 [ sin ( 0 ) + 4 sin ( π 2 ) + sin ( π ) ] = π 6 ( 0 + 4 ⋅ 1 + 0 ) = 2 π 3 ≈ 2.094 \int_{0}^{\pi} \sin(x) dx \approx \frac{\pi}{6} \left[ \sin(0) + 4\sin\left(\frac{\pi}{2}\right) + \sin(\pi) \right] = \frac{\pi}{6} (0 + 4 \cdot 1 + 0) = \frac{2\pi}{3} \approx 2.094 ∫0πsin(x)dx≈6π[sin(0)+4sin(2π)+sin(π)]=6π(0+4⋅1+0)=32π≈2.094
实际值为 2 2 2, 辛普森法则的估计更接近真实值。
数值微分方法
数值微分用于近似计算函数的导数,常用的方法包括前向差分、后向差分和中心差分。
- 前向差分:
f ′ ( x ) ≈ f ( x + h ) − f ( x ) h f'(x) \approx \frac{f(x + h) - f(x)}{h} f′(x)≈hf(x+h)−f(x)
- 后向差分:
f ′ ( x ) ≈ f ( x ) − f ( x − h ) h f'(x) \approx \frac{f(x) - f(x - h)}{h} f′(x)≈hf(x)−f(x−h)
- 中心差分:
f ′ ( x ) ≈ f ( x + h ) − f ( x − h ) 2 h f'(x) \approx \frac{f(x + h) - f(x - h)}{2h} f′(x)≈2hf(x+h)−f(x−h)
误差分析:
- 前向和后向差分的截断误差为 O ( h ) O(h) O(h)
- 中心差分的截断误差为 O ( h 2 ) O(h^2) O(h2),精度更高
- 步长 h h h 的选择需要在截断误差和舍入误差之间权衡
应用实例:
求函数 f ( x ) = e x f(x) = e^x f(x)=ex 在 x = 0 x=0 x=0 处的导数。
- 理论导数:
f ′ ( 0 ) = e 0 = 1 f'(0) = e^0 = 1 f′(0)=e0=1
- 数值近似(取 h = 0.01 h = 0.01 h=0.01):
- 前向差分:
f ′ ( 0 ) ≈ e 0.01 − e 0 0.01 = 1.01005 − 1 0.01 = 1.005 f'(0) \approx \frac{e^{0.01} - e^{0}}{0.01} = \frac{1.01005 - 1}{0.01} = 1.005 f′(0)≈0.01e0.01−e0=0.011.01005−1=1.005
- 中心差分:
f ′ ( 0 ) ≈ e 0.01 − e − 0.01 0.02 = 1.01005 − 0.99005 0.02 = 1.0000 f'(0) \approx \frac{e^{0.01} - e^{-0.01}}{0.02} = \frac{1.01005 - 0.99005}{0.02} = 1.0000 f′(0)≈0.02e0.01−e−0.01=0.021.01005−0.99005=1.0000
中心差分的结果更为精确,接近理论值。
数值解方程
线性方程组
高斯消元法
高斯消元法是一种系统地消去线性方程组中未知数的方法,通过行变换将增广矩阵化为上三角矩阵,从而逐步求解。
步骤:
-
构建增广矩阵:将线性方程组写成矩阵形式,包括系数矩阵和常数向量
-
构建增广矩阵:将线性方程组写成矩阵形式,包括系数矩阵和常数向量。
-
前向消元:通过行变换,使得矩阵的下方区域变为零,形成上三角矩阵。
-
回代求解:从最后一个方程开始,逐步求解出各未知数的值。
应用实例:
解方程组:
{ 2 x + 3 y − z = 5 4 x + 4 y − 3 z = 3 − 2 x + 3 y − 2 z = 2 \begin{cases} 2x + 3y - z = 5 \\ 4x + 4y - 3z = 3 \\ -2x + 3y - 2z = 2 \end{cases} ⎩ ⎨ ⎧2x+3y−z=54x+4y−3z=3−2x+3y−2z=2
- 构建增广矩阵:
( 2 3 − 1 ∣ 5 4 4 − 3 ∣ 3 − 2 3 − 2 ∣ 2 ) \begin{pmatrix} 2 & 3 & -1 & | & 5 \\ 4 & 4 & -3 & | & 3 \\ -2 & 3 & -2 & | & 2 \end{pmatrix} 24−2343−1−3−2∣∣∣532
- 前向消元:
- 将第二行减去两倍的第一行:
R 2 = R 2 − 2 R 1 ⇒ ( 4 4 − 3 ∣ 3 ) − 2 ⋅ ( 2 3 − 1 ∣ 5 ) = ( 0 − 2 − 1 ∣ − 7 ) R2 = R2 - 2R1 \Rightarrow \begin{pmatrix} 4 & 4 & -3 & | & 3 \end{pmatrix} - 2 \cdot \begin{pmatrix} 2 & 3 & -1 & | & 5 \end{pmatrix} = \begin{pmatrix} 0 & -2 & -1 & | & -7 \end{pmatrix} R2=R2−2R1⇒(44−3∣3)−2⋅(23−1∣5)=(0−2−1∣−7)
- 将第三行加上第一行:
R 3 = R 3 + R 1 ⇒ ( − 2 3 − 2 ∣ 2 ) + ( 2 3 − 1 ∣ 5 ) = ( 0 6 − 3 ∣ 7 ) R3 = R3 + R1 \Rightarrow \begin{pmatrix} -2 & 3 & -2 & | & 2 \end{pmatrix} + \begin{pmatrix} 2 & 3 & -1 & | & 5 \end{pmatrix} = \begin{pmatrix} 0 & 6 & -3 & | & 7 \end{pmatrix} R3=R3+R1⇒(−23−2∣2)+(23−1∣5)=(06−3∣7)
- 新的增广矩阵:
( 2 3 − 1 ∣ 5 0 − 2 − 1 ∣ − 7 0 6 − 3 ∣ 7 ) \begin{pmatrix} 2 & 3 & -1 & | & 5 \\ 0 & -2 & -1 & | & -7 \\ 0 & 6 & -3 & | & 7 \end{pmatrix} 2003−26−1−1−3∣∣∣5−77
- 消去第三行的第二个未知数:
R 3 = R 3 + 3 R 2 ⇒ ( 0 6 − 3 ∣ 7 ) + 3 ⋅ ( 0 − 2 − 1 ∣ − 7 ) = ( 0 0 − 6 ∣ − 14 ) R3 = R3 + 3R2 \Rightarrow \begin{pmatrix} 0 & 6 & -3 & | & 7 \end{pmatrix} + 3 \cdot \begin{pmatrix} 0 & -2 & -1 & | & -7 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -6 & | & -14 \end{pmatrix} R3=R3+3R2⇒(06−3∣7)+3⋅(0−2−1∣−7)=(00−6∣−14)
- 回代求解:
从第三行:
− 6 z = − 14 ⇒ z = 14 6 = 7 3 -6z = -14 \Rightarrow z = \frac{14}{6} = \frac{7}{3} −6z=−14⇒z=614=37
从第二行:
− 2 y − z = − 7 ⇒ − 2 y − 7 3 = − 7 ⇒ − 2 y = − 7 + 7 3 = − 14 3 ⇒ y = 7 3 -2y - z = -7 \Rightarrow -2y - \frac{7}{3} = -7 \Rightarrow -2y = -7 + \frac{7}{3} = -\frac{14}{3} \Rightarrow y = \frac{7}{3} −2y−z=−7⇒−2y−37=−7⇒−2y=−7+37=−314⇒y=37
从第一行:
2 x + 3 y − z = 5 ⇒ 2 x + 3 ⋅ 7 3 − 7 3 = 5 ⇒ 2 x + 7 − 7 3 = 5 ⇒ 2 x = 5 − 7 + 7 3 = − 2 + 7 3 = − 6 3 + 7 3 = 1 3 ⇒ x = 1 6 2x + 3y - z = 5 \Rightarrow 2x + 3 \cdot \frac{7}{3} - \frac{7}{3} = 5 \Rightarrow 2x + 7 - \frac{7}{3} = 5 \Rightarrow 2x = 5 - 7 + \frac{7}{3} = -2 + \frac{7}{3} = -\frac{6}{3} + \frac{7}{3} = \frac{1}{3} \Rightarrow x = \frac{1}{6} 2x+3y−z=5⇒2x+3⋅37−37=5⇒2x+7−37=5⇒2x=5−7+37=−2+37=−36+37=31⇒x=61
解得:
x = 1 6 , y = 7 3 , z = 7 3 x = \frac{1}{6}, \quad y = \frac{7}{3}, \quad z = \frac{7}{3} x=61,y=37,z=37
迭代法
迭代法通过不断逼近的方式求解线性方程组,常见的方法包括雅可比迭代法、高斯-塞德尔迭代法和松弛法等。
雅可比迭代法:
将线性方程组 A x = b Ax = b Ax=b 分解为 A = D + R A = D + R A=D+R,其中 D D D 为对角矩阵, R R R 为剩余部分。迭代公式为:
x ( k + 1 ) = D − 1 ( b − R x ( k ) ) x^{(k+1)} = D^{-1}(b - Rx^{(k)}) x(k+1)=D−1(b−Rx(k))
高斯-塞德尔迭代法:
在雅可比迭代的基础上,使用最新的迭代结果进行更新,迭代公式为:
x i ( k + 1 ) = 1 a i i ( b i − ∑ j = 1 i − 1 a i j x j ( k + 1 ) − ∑ j = i + 1 n a i j x j ( k ) ) x_i^{(k+1)} = \frac{1}{a_{ii}} \left( b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} \right) xi(k+1)=aii1(bi−j=1∑i−1aijxj(k+1)−j=i+1∑naijxj(k))
收敛条件:
迭代法的收敛性取决于矩阵 A A A 的性质,通常对严格对角优势矩阵或对称正定矩阵收敛。
应用实例:
使用雅可比迭代法求解线性方程组:
{ x = 1 2 ( b − y ) y = 1 3 ( a + z ) z = 1 4 ( x + y ) \begin{cases} x = \frac{1}{2}(b - y) \\ y = \frac{1}{3}(a + z) \\ z = \frac{1}{4}(x + y) \end{cases} ⎩ ⎨ ⎧x=21(b−y)y=31(a+z)z=41(x+y)
选择初始猜测 x ( 0 ) = 0 x^{(0)} = 0 x(0)=0, y ( 0 ) = 0 y^{(0)} = 0 y(0)=0, z ( 0 ) = 0 z^{(0)} = 0 z(0)=0,进行迭代计算。
非线性方程
牛顿迭代法
牛顿迭代法是一种用于求解非线性方程 f ( x ) = 0 f(x) = 0 f(x)=0 的高效方法。其迭代公式为:
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} xn+1=xn−f′(xn)f(xn)
步骤:
- 选择初始猜测值 x 0 x_0 x0。
- 计算函数值 f ( x n ) f(x_n) f(xn) 和导数 f ′ ( x n ) f'(x_n) f′(xn)。
- 更新迭代值 x n + 1 x_{n+1} xn+1。
- 重复步骤 2-3,直到满足收敛条件。
收敛条件:
- 初始猜测值需足够接近实际根。
- 函数在根附近应具有连续的一阶导数。
应用实例:
求解方程 f ( x ) = x 2 − 2 = 0 f(x) = x^2 - 2 = 0 f(x)=x2−2=0 的正根。
- 设定初始猜测值 x 0 = 1.5 x_0 = 1.5 x0=1.5。
- 计算 f ( x 0 ) = 1. 5 2 − 2 = 0.25 f(x_0) = 1.5^2 - 2 = 0.25 f(x0)=1.52−2=0.25, f ′ ( x 0 ) = 2 ⋅ 1.5 = 3 f'(x_0) = 2 \cdot 1.5 = 3 f′(x0)=2⋅1.5=3。
- 迭代更新:
x 1 = 1.5 − 0.25 3 ≈ 1.4167 x_1 = 1.5 - \frac{0.25}{3} \approx 1.4167 x1=1.5−30.25≈1.4167
- 重复迭代,直到 ∣ x n + 1 − x n ∣ < ϵ |x_{n+1} - x_n| < \epsilon ∣xn+1−xn∣<ϵ。
经过几次迭代,可得到 x ≈ 1.4142 x \approx 1.4142 x≈1.4142,接近 2 \sqrt{2} 2。
二分法与割线法
二分法是一种基于连续性和介值定理的简单数值方法。适用于函数在某区间内由正变负或由负变正的情况下,逐步缩小包含根的区间。
步骤:
- 选择区间 [ a , b ] [a, b] [a,b],满足 f ( a ) f ( b ) < 0 f(a)f(b) < 0 f(a)f(b)<0。
- 计算中点 c = a + b 2 c = \frac{a + b}{2} c=2a+b,并计算 f ( c ) f(c) f(c)。
- 根据符号变化确定新的区间:
- 若 f ( a ) f ( c ) < 0 f(a)f(c) < 0 f(a)f(c)<0,则根在 [ a , c ] [a, c] [a,c]。
- 否则,根在 [ c , b ] [c, b] [c,b]。
- 重复步骤 2-3,直到区间长度小于预设精度。
割线法是一种利用两点来逼近根的迭代方法,避免了计算导数的过程。
迭代公式:
x n + 1 = x n − f ( x n ) x n − x n − 1 f ( x n ) − f ( x n − 1 ) x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} xn+1=xn−f(xn)f(xn)−f(xn−1)xn−xn−1
收敛条件:
- 割线法的收敛速度通常高于二分法,但依赖于初始猜测值的选择。
应用实例:
使用二分法求解方程 f ( x ) = x 3 − x − 2 = 0 f(x) = x^3 - x - 2 = 0 f(x)=x3−x−2=0 的根。
- 选择初始区间 [ 1 , 2 ] [1, 2] [1,2],因为 f ( 1 ) = − 2 f(1) = -2 f(1)=−2, f ( 2 ) = 4 f(2) = 4 f(2)=4,满足 f ( 1 ) f ( 2 ) < 0 f(1)f(2) < 0 f(1)f(2)<0。
- 计算中点 c = 1.5 c = 1.5 c=1.5, f ( 1.5 ) = 1. 5 3 − 1.5 − 2 = − 0.875 f(1.5) = 1.5^3 - 1.5 - 2 = -0.875 f(1.5)=1.53−1.5−2=−0.875。
- 选择新的区间 [ 1.5 , 2 ] [1.5, 2] [1.5,2]。
- 重复迭代,直至找到足够精确的根。
通过多次迭代,可得到根 x ≈ 1.521 x \approx 1.521 x≈1.521。
第五部分:复变函数
复数及其运算
复数的定义与表示
复数是形如 z = a + b i z = a + bi z=a+bi 的数,其中 a a a 和 b b b 为实数, i i i 是虚数单位,满足 i 2 = − 1 i^2 = -1 i2=−1。复数在工程和物理中有广泛应用,如交流电路分析、信号处理、量子力学等领域。
补充说明:
- 复数集 C \mathbb{C} C 是实数集 R \mathbb{R} R 的扩展,包含所有实数(当 b = 0 b=0 b=0 时)
- 复数运算满足交换律、结合律和分配律
- 复数在描述旋转、振动等周期性现象时具有独特优势
复数的表示形式
-
代数形式:
z = a + b i z = a + bi z=a+bi,其中 a a a 为实部, b b b 为虚部。 -
几何形式:
复数可以在复平面上表示为点 ( a , b ) (a, b) (a,b),也可表示为向量。复数的模长为:
∣ z ∣ = a 2 + b 2 |z| = \sqrt{a^2 + b^2} ∣z∣=a2+b2
幅角为:
θ = arg ( z ) = tan − 1 ( b a ) \theta = \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) θ=arg(z)=tan−1(ab)
因此,复数的极坐标形式为:
z = ∣ z ∣ ( cos θ + i sin θ ) = ∣ z ∣ e i θ z = |z| (\cos \theta + i \sin \theta) = |z| e^{i\theta} z=∣z∣(cosθ+isinθ)=∣z∣eiθ
补充说明:
- 模长 ∣ z ∣ |z| ∣z∣ 表示复数的大小,幅角 θ \theta θ 表示复数的方向
- 极坐标形式在乘除法运算中特别方便
- 欧拉公式 e i θ = cos θ + i sin θ e^{i\theta} = \cos \theta + i \sin \theta eiθ=cosθ+isinθ 是连接指数函数和三角函数的桥梁
复数的基本运算
-
加法与减法:
z 1 ± z 2 = ( a 1 ± a 2 ) + i ( b 1 ± b 2 ) z_1 \pm z_2 = (a_1 \pm a_2) + i(b_1 \pm b_2) z1±z2=(a1±a2)+i(b1±b2) -
乘法:
z 1 ⋅ z 2 = ( a 1 a 2 − b 1 b 2 ) + i ( a 1 b 2 + a 2 b 1 ) z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1) z1⋅z2=(a1a2−b1b2)+i(a1b2+a2b1) -
除法:
z 1 z 2 = z 1 ⋅ z 2 ‾ ∣ z 2 ∣ 2 = a 1 a 2 + b 1 b 2 a 2 2 + b 2 2 + i b 1 a 2 − a 1 b 2 a 2 2 + b 2 2 \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + i \frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2} z2z1=∣z2∣2z1⋅z2=a22+b22a1a2+b1b2+ia22+b22b1a2−a1b2
其中, z 2 ‾ = a 2 − b 2 i \overline{z_2} = a_2 - b_2 i z2=a2−b2i 为 z 2 z_2 z2 的共轭复数。 -
幂运算:
利用德摩弗公式:
z n = ∣ z ∣ n ( cos n θ + i sin n θ ) z^n = |z|^n (\cos n\theta + i \sin n\theta) zn=∣z∣n(cosnθ+isinnθ)
补充说明:
- 复数运算的几何意义:加法对应向量相加,乘法对应旋转和缩放
- 共轭复数在计算模长和除法中起重要作用
- 德摩弗公式是计算复数幂运算的利器
复函数
解析函数的定义与性质
解析函数是指在某开集内具有导数的复值函数。具体来说,函数 f ( z ) f(z) f(z) 在点 z 0 z_0 z0 处解析,如果在 z 0 z_0 z0 的某邻域内, f ( z ) f(z) f(z) 关于 z z z 可导。
柯西-黎曼条件:
若函数
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
f(z) = u(x, y) + i v(x, y)
f(z)=u(x,y)+iv(x,y) 在点
(
x
,
y
)
(x, y)
(x,y) 处可导,其中
z
=
x
+
i
y
z = x + iy
z=x+iy,则必须满足:
∂
u
∂
x
=
∂
v
∂
y
,
∂
u
∂
y
=
−
∂
v
∂
x
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
∂x∂u=∂y∂v,∂y∂u=−∂x∂v
解析函数的性质:
- 解析函数在其定义域内具有无限次可导性
- 解析函数满足柯西积分定理和柯西积分公式
- 解析函数的实部和虚部都是调和函数
- 解析函数的零点与极点等性质作用于复变积分的计算中
- 解析函数具有唯一性:若两个解析函数在某个区域内相等,则在整个定义域内相等
补充说明:
- 解析函数是复变函数理论的核心概念
- 柯西-黎曼条件是判断函数是否解析的重要准则
- 解析函数在流体力学、电磁学等领域有重要应用
复变积分
积分路径与柯西积分定理
积分路径
复变函数的积分通常沿着复平面上的曲线(路径)进行。设
γ
\gamma
γ 是复平面上的一条平滑曲线,
f
(
z
)
f(z)
f(z) 是在
γ
\gamma
γ 上连续且在其内部解析的函数,则复积分定义为:
∫
γ
f
(
z
)
d
z
=
∫
a
b
f
(
γ
(
t
)
)
γ
′
(
t
)
d
t
\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt
∫γf(z)dz=∫abf(γ(t))γ′(t)dt
其中,
γ
:
[
a
,
b
]
→
C
\gamma: [a, b] \to \mathbb{C}
γ:[a,b]→C 是路径的参数化表示。
补充说明:
- 积分路径的方向会影响积分结果
- 积分路径的选择应避开函数的奇点
- 复积分可以分解为实部和虚部的线积分
柯西积分定理
定理陈述:
如果函数
f
(
z
)
f(z)
f(z) 在有向闭合曲线
γ
\gamma
γ 所围成的区域内解析,则:
∫
γ
f
(
z
)
d
z
=
0
\int_{\gamma} f(z) dz = 0
∫γf(z)dz=0
柯西积分公式:
对于解析函数
f
(
z
)
f(z)
f(z),有:
f
(
z
0
)
=
1
2
π
i
∮
γ
f
(
z
)
z
−
z
0
d
z
f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z - z_0} dz
f(z0)=2πi1∮γz−z0f(z)dz
应用实例:
计算函数
f
(
z
)
=
e
z
f(z) = e^z
f(z)=ez 在单位圆周上的积分。
由于
e
z
e^z
ez 在整个复平面上解析,根据柯西积分定理,有:
∫
∣
z
∣
=
1
e
z
d
z
=
0
\int_{|z|=1} e^z dz = 0
∫∣z∣=1ezdz=0
补充说明:
- 柯西积分定理是复变函数理论的重要基石
- 柯西积分公式可以用来计算解析函数在任意点的值
- 这些定理在计算复杂积分时非常有用
留数定理
定义与原理
留数定理是复变函数积分的重要工具,用于计算带有孤立奇点的函数在闭合路径上的积分。
留数的定义:
对于函数
f
(
z
)
f(z)
f(z) 在孤立奇点
z
0
z_0
z0 处的留数,记作
Res
(
f
,
z
0
)
\operatorname{Res}(f, z_0)
Res(f,z0),等于
f
(
z
)
f(z)
f(z) 的洛朗级数中
(
z
−
z
0
)
−
1
(z - z_0)^{-1}
(z−z0)−1 项的系数。
留数定理陈述:
设
f
(
z
)
f(z)
f(z) 在简单闭合曲线
γ
\gamma
γ 的内部有有限个孤立奇点
z
1
,
z
2
,
…
,
z
n
z_1, z_2, \ldots, z_n
z1,z2,…,zn,则:
∫
γ
f
(
z
)
d
z
=
2
π
i
∑
k
=
1
n
Res
(
f
,
z
k
)
\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{n} \operatorname{Res}(f, z_k)
∫γf(z)dz=2πik=1∑nRes(f,zk)
计算复杂积分的方法
利用留数定理,可以简化某些复杂积分的计算,特别是涉及实数轴上积分的情况。
应用实例:
计算实数轴上的积分:
∫
−
∞
∞
1
x
2
+
1
d
x
\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx
∫−∞∞x2+11dx
解答步骤:
- 将积分扩展到复平面,考虑函数 f ( z ) = 1 z 2 + 1 f(z) = \frac{1}{z^2 + 1} f(z)=z2+11。
- f ( z ) f(z) f(z) 在 z = i z = i z=i 和 z = − i z = -i z=−i 处有极点,选择上半平面的闭合路径,包含极点 z = i z = i z=i。
- 计算留数:
Res ( 1 z 2 + 1 , i ) = lim z → i ( z − i ) 1 ( z − i ) ( z + i ) = 1 2 i \operatorname{Res}\left(\frac{1}{z^2 + 1}, i\right) = \lim_{z \to i} (z - i)\frac{1}{(z - i)(z + i)} = \frac{1}{2i} Res(z2+11,i)=z→ilim(z−i)(z−i)(z+i)1=2i1 - 根据留数定理:
∫ − ∞ ∞ 1 x 2 + 1 d x = 2 π i ⋅ 1 2 i = π \int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx = 2\pi i \cdot \frac{1}{2i} = \pi ∫−∞∞x2+11dx=2πi⋅2i1=π
补充说明:
- 留数定理在计算实积分、傅里叶变换和拉普拉斯变换中都有重要应用
- 留数定理是工程数学中不可或缺的工具
- 掌握留数计算技巧对解决复杂积分问题至关重要