【迁移学习】Self-Supervised Learning for Domain Adaptation on Point Clouds

摘要

我们描述了点云上用于域自适应(DA)的自监督学习(SSL)的第一个研究。我们引入了一类新的伪装任务,形变重建,其灵感来自于sim-to-real 变换中遇到的形变。此外,我们还提出了一种基于混合方法的标签点云数据训练方法,称为点云混合(PCM)。对用于分类和分割的域适应数据集的评估表明,与现有方法和基线方法相比,该方法有了很大的改进。

1.介绍

自监督学习(SSL)最近被证明对于从未标记的图像或视频中学习有用的表征非常有效。关键思想是定义一个辅助的“借口”任务,使用有监督的技术进行训练,然后将学习到的表示用于感兴趣的主要任务。虽然SSL通常对图像和视频有效,但如何将其应用于其他类型的数据仍不完全清楚。最近,已经有一些尝试设计用于表示学习的点云数据的SSL辅助任务,但这一领域的研究在很大程度上仍未被探索。由于SSL对未标记的数据进行操作,因此测试其对无监督域自适应(UDA)的有效性是很自然的。
领域适应(DA)最近引起了极大的关注。在UDA中,一个目标是对来自目标分布的数据进行分类,但唯一可用的标记样本来自另一个源分布。这种学习设置有很多应用,包括 “sim-to-real”:模型在模拟数据上训练,在模拟数据中有丰富的标签,并在真实世界的数据上进行测试。最近,SSL被成功地应用于跨域的学习。在视觉任务(例如对象识别和分割)的域自适应中。虽然SSL已经被用来适应图像中的新域,但SSL是否以及如何应用于其他数据类型(特别是3D数据)的DA尚不清楚。
本文讨论了在DA环境下为点云发展SSL的挑战。我们描述了一种用于适应新的点云分布的SSL方法。我们的方法是基于具有多头网络的多任务架构。使用源域上的分类或分段loss来训练一个头部,而使用新的SSL loss来训练第二个头部。
为了学习捕获目标域结构的表示,我们开发了一系列新的辅助任务,称为信息重建(DefRec)。我们设计它是为了解决扫描点云中遇到的常见变形。在自然环境中扫描物体通常会由于遮挡而导致物体缺失部分(见图3第三列)。新辅助任务背后的关键思想如下:它通过脱位某些点来变形形状区域;然后,网络必须将这些点映射回原来的位置,重建形状的缺失区域。重要的是,这项任务的成功需要网络学习对象的基本统计结构。
在本文中,我们对变形形状的不同方法进行了广泛的研究。我们将这些方法分为三类:
(1)基于体积的变形:基于输入空间 R 3 \R^3 R3的邻近度选择区域;
(2)基于特征的变形:利用深点嵌入选择语义相似的区域;
(3)基于采样的变形:基于三种简单的采样方案选择区域。
作为一个单独的贡献,我们提出了一种由混合方法激励的标记点云数据的训练过程,称为点云混合(PCM)。PCM在训练期间应用于源对象,而不是标准分类任务。与DefRec一起,PCM在这一领域的基准分类数据集中产生了比域适应的SOTA更大的改进。
最后,我们设计了一个新的点云分割DA基准。我们表明,DefRec可以很容易地扩展到分割任务,与基线方法相比,性能有所提高。
贡献:
1)本文是第一篇研究点云上的SSL域自适应的论文。
2)描述了DefRec,这是一类新的针对点云数据的辅助任务,其动机是在“sim-to-real”场景中遇到的失真类型。
3)我们实现了一种新的点云区域自适应SOTA算法,在“sim-to-real”任务中比以往的算法有了很大的改进。
4)提出了一种新的点云数据混合算法。
5)提出了一种新的点云分割DA基准。

2.相关工作

点云的域自适应:PointDAN设计了一个基于三个广泛使用的点云数据集:ShapeNet、ModelNet和ScanNet的数据集。他们提出了一种联合对齐局部和全局点云特征进行分类的模型。[40]提出了一种通用模块,将来自不同领域的信息嵌入到共享空间中进行目标检测。其他几项研究考虑使用不直接对无序点集进行操作的方法对LiDAR数据进行域适配。[21]和[57]建议了用于从稀疏体素表示中分割点云的DA方法。[21]需要对场景的点云和图像表示进行裁剪,[57]建议在从点云恢复的3D表面上应用分段。[34]提出了一种基于目标区域建议损失、点分割损失和目标回归损失的体素化点输入DA方法。[37]解决了使用CycleGAN从鸟瞰(BEV)中检测车辆的任务。[51]针对投影到球面上的形状,设计了一种目标分割的训练过程。
域自适应的自监督学习:用于域适配的SSL是一个相对较新的研究课题。现有文献大多是最新的,并且应用于图像领域,这与无序点云有根本不同。[15] 建议使用源和目标样本的共享编码器,然后使用源样本的分类网络和目标样本的重建网络。[53]建议在特征提取器上使用SSL 辅助任务,如图像旋转和补丁位置预测。[41]将解决方案扩展到具有多个SSL辅助任务的多任务问题。[4] 提倡使用拼图[28]辅助任务进行领域概括和调整。我们的方法与基本架构设计中的这些方法相似,但在数据类型和辅助任务方面有所不同。通过基于标记源数据的无监督方式学习聚类目标数据,解决了通用域自适应问题。其他几项研究表明,通过SSL学习有用的表示法以进行跨域学习的结果很有希望。[33]建议使用合成图像的易于获取的标签,如表面法线、深度和实例轮廓,使用合成数据训练网络。[11] 建议使用SSL预文本任务,如图像旋转,作为其域泛化体系结构的一部分。
深度学习中的点云重建和补全:提出了许多点云补全和重建的方法。这些研究大多集中于高质量的形状重建和补全。我们的论文从这些研究中得到了启发,并提出了有效的域适应辅助重建任务。[1] 建议根据[30]中提出的架构,使用自动编码器(AE)学习点云表示。在第5节中,我们展示了我们的方法优于他们的方法。[7] 建议通过在未配对的干净和部分点云的潜在空间上训练GAN来重建点云。由于模式崩溃等常见陷阱,训练GAN可能具有挑战性,另一方面,我们的方法更容易训练。[58]通过学习点功能并复制它们,建议对点云进行上采样的体系结构。[59]从全局特征向量表示中提出了部分点云的对象完成网络。[47]通过对重建形状的级联细化扩展了[59]方法。

3.方法

在本节中,我们将介绍我们的方法的主要组成部分。我们首先描述我们的通用管道,然后详细解释我们的主要贡献,即DefRec,一系列SSL任务。我们通过描述混合方法[61]所产生的PCM和训练过程来结束本节,我们发现混合方法与DefRec相结合是有效的。为了清楚起见,我们在分类任务的上下文中描述DefRec。第5节详细介绍了DefRec对分割的扩展。

3.1.概述

我们解决点云的无监督域自适应问题。这里,我们给出了源分布中的标记实例和不同的目标分布中的无标记实例。两种点云分布都基于同一组类标记的对象。给定两个分布的实例,目标是训练一个模型,该模型能够正确地对目标域中的样本进行分类。
我们采用一种常见的方法来解决DA的学习设置问题,即学习一个共享特征编码器,并在两项任务上进行培训:
(1) 源域上的受监督任务;
(2)源域和目标域上的可训练的自监督任务。
为此,我们提出了一系列新的自监督任务,称为变形重建(DefRec),我们首先对输入点云中的区域进行变形,然后训练我们的模型进行重建。
更正式地说, X , Y X,Y X,Y会相应地记录我们的输入空间和标签空间。让 S ⊂ X × Y S \subset X×Y SX×Y表示来自源域的标记数据, T ⊂ X T \subset X TX表示来自目标域的未标记数据。我们用 x ∈ R n × 3 x \in \R^{n×3} xRn×3表示输入点云, x ^ ∈ R n × 3 \hat{x} \in \R^{n×3} x^Rn×3表示它的变形版本,其中n是点数。我们的训练方案有两个单独的数据流,以交替方式和端到端方式进行培训。监督数据流和自监督数据流。两个数据流使用相同的特征编码器 Φ \Phi Φ,该编码器由点云的神经网络建模。经过共享特征编码器处理后,标记的源样本由 h s u p h_{sup} hsup表示的全连接子网络(head)进一步处理,并对其结果应用监督损失(常规交叉熵损失或将在第3.3节中描述的混合变量)。类似地,在共享特征编码器之后,未标记的源/目标样本被馈送到不同的头部 h S S L h_{SSL} hSSL,其负责生成重建版本的 x ^ \hat{x} x

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
自我监督学习是一种机器学习方法,通过对数据进行合理的预测任务,从中获得有用的表示。与传统的监督学习不同,自我监督学习不需要人工标注的标签来指导训练,而是利用数据自身的信息进行训练。 自我监督学习的基本思想是从未标记的数据中构造有意义的标签,然后将这些标签用作训练数据,以学习有用的特征表示。通过对输入数据进行某种形式的变换或遮挡,可以生成一对相关的样本。其中一个样本称为正样本,另一个则被视为负样本。例如,在图像领域中,可以通过将图像进行旋转、裁剪或遮挡等变换来生成正负样本对。模型的目标是通过学习从一个样本到另一个样本的映射,从而使得正样本对之间的相似度更高,负样本对之间的相似度更低。 自我监督学习在许多任务中都取得了很好的效果。例如,在自然语言处理任务中,可以通过遮挡句子中的某些单词或短语来生成正负样本对,然后通过学习从一个句子到另一个句子的映射来进行训练。在计算机视觉任务中,可以通过图像的旋转、裁剪、遮挡或色彩变换等方式来生成正负样本对。 自我监督学习的优点是不需要人工标注的标签,可以利用大量的未标记数据来进行训练,从而扩大训练数据的规模。此外,自我监督学习还可以通过学习到的特征表示来提高其他任务的性能,如分类、目标检测和语义分割等。 总之,自我监督学习是一种有效的无监督学习方法,通过构造有意义的预测任务,从未标记的数据中学习有用的特征表示。它在各种任务中都有广泛的应用,并具有很高的潜力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值