机器学习应对的数学问题类型
推荐阅读
《分类与聚类的主要区别》
sklearn核心降维算法比较
1. 分类问题 (Classification)
- 定义:将数据集中的实例分配到预先定义的类别中。
- 应用示例:垃圾邮件过滤、疾病诊断、手写数字识别等。
2. 回归问题 (Regression)
- 定义:预测一个或多个连续变量的输出值。
- 应用示例:房价预测、股票价格预测、销售额预测等。
3. 聚类问题 (Clustering)
- 定义:将数据集中的对象分成若干组,使得同一组内的对象彼此相似,而不同组的对象彼此相异。
- 应用示例:客户细分、文档聚类、图像分割等。