【机器学习】机器学习应对的数学问题类型

机器学习应对的数学问题类型

推荐阅读

《分类与聚类的主要区别》
sklearn核心降维算法比较

1. 分类问题 (Classification)

  • 定义:将数据集中的实例分配到预先定义的类别中。
  • 应用示例:垃圾邮件过滤、疾病诊断、手写数字识别等。

2. 回归问题 (Regression)

  • 定义:预测一个或多个连续变量的输出值。
  • 应用示例:房价预测、股票价格预测、销售额预测等。

3. 聚类问题 (Clustering)

  • 定义:将数据集中的对象分成若干组,使得同一组内的对象彼此相似,而不同组的对象彼此相异。
  • 应用示例:客户细分、文档聚类、图像分割等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值