IF 16+ 非小细胞肺癌的单细胞和空间转录组学分析

非小细胞肺癌的单细胞与空间转录组分析

图片

摘   要

肺癌是第二常见的癌症,也是全球癌症相关死亡率的主要原因。肿瘤生态系统具有多种免疫细胞类型。特别是髓样细胞很普遍,在促进疾病方面发挥着公认的作用。在我们的研究中,我们通过单细胞和空间转录组学分析了25名腺癌和鳞状细胞癌初治患者的约90万个细胞。我们注意到抗炎巨噬细胞和NK细胞/T细胞之间存在负相关关系,并且肿瘤内NK细胞的细胞毒性降低。虽然我们在腺癌和鳞状细胞癌中观察到相似的细胞类型组成,但我们检测到各种免疫检查点抑制剂的共表达存在显著差异。此外,我们揭示了肿瘤中巨噬细胞转录“重编程”的证据,将其转移到胆固醇输出,并采用促进铁外流的胎儿样转录特征。我们的多组学资源提供了肿瘤相关巨噬细胞的高分辨率分子图谱,加深了我们对它们在肿瘤微环境中作用的理解。

数据收集

scRNA-seq (N=24 patients)

Visium (N=8 patients)

软件使用

单细胞分析软件包列表

软件包名称

主要应用领域

官方链接

CellRanger

单细胞RNA测序原始数据处理

10x Genomics

Harmony

多数据集批次校正与整合

GitHub

DropletUtils

液滴数据质控与空滴检测

Bioconductor

Scanpy

Python单细胞分析全流程

官方网站

Seurat

R语言单细胞分析标准工具包

官方网站

Scrublet

双细胞检测与过滤

GitHub

harmonypy

Python版Harmony批次校正

GitHub

harmonyR

R语言版Harmony批次校正

GitHub

scArches

单细胞参考图谱映射与迁移学习

GitHub

CellPhoneDB

细胞间通讯网络分析

GitHub

DESeq2

差异基因表达分析(伪bulk模式)

Bioconductor

Pegasus

大规模单细胞云端分析平台

官方网站

PAGA

细胞轨迹与分化路径推断

GitHub

CopyKAT

肿瘤细胞拷贝数变异检测

GitHub

cell2location

空间转录组细胞类型定位

GitHub

关键应用场景

  1. 数据预处理

  • CellRanger: 原始测序数据处理

  • DropletUtils: 液滴数据质控

  • Scrublet: 双细胞过滤

  • 数据整合

    • Harmony/harmonypy/harmonyR: 批次校正

    • scArches: 参考图谱整合

  • 核心分析

    • Scanpy/Pegasus: 标准化分析流程

    • Seurat: 双细胞过滤

    • DESeq2: 差异表达分析

    • PAGA: 发育轨迹重构

    • CopyKAT: 肿瘤异质性分析

  • 高级应用

    • CellPhoneDB: 细胞互作网络

    • cell2location: 空间位置解析

    统计方法

    Wilcoxon rank-sum test

    Wilcoxon signed-rank test

    a two-sided Bonferroni correction

    实验方法

    Immunohistochemistry (IHC) and neutral lipid staining

    Multiplexed Immunofluorescence

    Image analysis

    研究成果

    1.单细胞转录组学揭示非小细胞肺癌的异质性

    A 研究概述。

    B 队列概述。

    C UMAP投影和组合背景+健康数据集。

    D 用于肿瘤样本中广泛细胞类型注释的代表性基因的点图。

    E 等值线图显示了AT2细胞、CAML和AIMɸ中髓系和上皮基因的共表达。

    F 盒图显示AT2细胞、CAML和AIM中髓系和上皮基因的正常化、标度化和对数转化的基因表达。

    G 在CD235富集范围内计算的肿瘤和背景中非免疫细胞亚群的相对比例。

    2.整合的单细胞和空间转录组学揭示了LUAD和LUSC中不同的相互作用网络

    A 整合的单细胞和空间转录组学揭示了LUAD和LUSC中不同的相互作用网络。

    B 热图显示了LUAD和LUSC中广泛的细胞注释总结的所有细胞类型之间的LR相互作用数量。

    C ICI在LUAD和LUSC中的肿瘤特异性相互作用。

    D 突出显示的ICI基因和细胞类型的点图。

    E VEGFA/B相互作用物在LUAD和LUSC中的肿瘤特异性相互作用。

    F EGFR相互作用物在LUAD和LUSC中的肿瘤特异性相互作用。

    3.10x Visium证实了关键配体-受体对的空间共定位

    A 一张空间图像描绘了代表性肿瘤切片上AT2细胞、AIM和Tregs的细胞丰度。

    B 根据肿瘤和背景切片中细胞2位置的细胞丰度估计计算的免疫和非免疫细胞类型的相对比例。

    C 空间LR共定位热图。

    D 方框图显示了在所分析的每个切片中,肿瘤与背景中结肠定位LR对的频率存在显著差异。

    E 空间图像描绘了NRP1-VEGFA、NECTIN2-TIGIT、PD1

### 空间转录组单细胞转录组联合分 #### 方法概述 为了更好地理解复杂组织中的细胞异质性空间分布,将空间转录组单细胞转录组数据相结合成为了一种强有力的研究手段。这种组合不仅保留了单细胞分辨率下的基因表达特征,还增加了空间维度的信息,使得研究人员可以探索特定区域内细胞类型的特异性及其相互作用。 #### 数据预处理 在进行联合分前,通常先要对两种类型的数据分别进行标准化质量控制。对于10X Genomics平台产生的空间转录组数据,可以通过Cell Ranger软件完成初步的质量评估过滤操作[^2];而对于单细胞RNA-seq数据,则需利用Seurat或其他类似的工具来进行降维、聚类以及去除低质量样本等工作。 #### 整合策略 目前存在多种用于整合这两种不同类型数据集的技术方案: - **基于共同标记基因匹配**:寻找两套数据集中都高度表达的一系列标志性的housekeeping genes作为桥梁,在此基础上构建统一坐标系来表示每种细胞的位置关系。 - **图神经网络模型(GCNs)**:这种方法借鉴了机器学习领域内的概念,通过建立节点代表各个spot或cell,并赋予边权重反映它们之间的物理距离或者分子相似度,进而训练深层架构捕捉全局模式并预测未知属性[^1]。 - **LIGER框架下执行iNMF分解**:这是一种特别针对跨模态数据分设计出来的矩阵因子化技术,它允许同时考虑多个输入源而不会丢失各自特性的同时找到潜在公共结构[^5]。 #### 应用实例 上述提到的方法已经被广泛应用于实际科研项目当中。例如,在一项关于细胞肺癌的研究里,科学家们就采用了Python脚本配合R语言编写了一系列自动化工作流,成功揭示出了肿瘤微环境中不同亚群间的通讯机制及动态变化规律[^3]。另外还有研究者通过对健康个体肺部组织样品实施全方位扫描后发现了一些以前未曾报道过的新型免疫细胞生态位的存在形式[^4]。 ```python import scanpy as sc from scipy.sparse import csr_matrix import numpy as np def preprocess_spatial_data(spatial_adata): """Preprocess spatial transcriptomic data.""" # Normalize and filter the spatial dataset sc.pp.normalize_total(spatial_adata, target_sum=1e4) sc.pp.log1p(spatial_adata) def integrate_sc_and_st(sc_adata, st_adata): """Integrate single-cell and spatial datasets using Seurat's integration method""" common_genes = list(set(sc_anchors.var_names).intersection(st_spots.var_names)) # Subset both AnnData objects to only include these common genes sc_common = sc_adata[:, common_genes].copy() st_common = st_adata[:, common_genes].copy() # Integrate with Scanorama or Harmony etc. integrated_anndata = ... # Placeholder for actual integration code return integrated_anndata ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值