一张图看懂决策树

本文探讨了决策树的训练过程,指出在100万个实例的训练集中,决策树深度通常约为20层,但实际可能更深。节点的基尼不纯度通常低于父节点,以实现最优划分。当决策树欠拟合时,缩放输入特征通常无效。

在这里插入图片描述
一些问题
如果训练集有100万个实例,训练决策树大致的深度是多少?

  • 通常来说,二元决策树训练到最后大体都是平衡的,如果不加以限制,最后平均每个叶节点一个实例。因此,如果训练集包含100万个实例,那么决策树的深度为20层。(实际上会更多一些,因为决策树通常不可能完美平衡。)

通常来说,子节点的基尼不纯度是高于还是低于其父节点?是通常更高/更低?还是永远更高/更低?

  • 一个节点的基尼不纯度通常比其父结点低。CART算法分类每个节点的方法,就是使其子节点的基尼不纯度的加权之和最小。但是,如果一个子节点的不纯度远小于另一个,那么也有可能使子节点的基尼不纯度比起父节点高。

如果决策树对训练集欠拟合,尝试缩放输入特征是否为一个好主意?

  • 决策树的优点之一就是他们不关心训练数据,是缩放还是集中。所以如果决策树不适合训练集,缩放输入特征,不过是浪费时间罢了。

快速入门版本
快速回顾版本

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值