数字图像处理——图像退化与复原

内容简介

  图像复原和图像增强两者有较大的重合部分。但图像增强更多的是主观过程,是人们希望通过某种方法加强图像特定信息或细节的操作。而图像复原可以说是客观过程,是因为在使用设备拍照过程中,由于某些客观原因所导致拍摄出来的图像与设备拍摄的理想图像有差异,所以希望通过某些操作来消除这些客观因素给图像带来的干扰,从而呈现出更真实的图像过程。
  本篇内容主要知识来自冈萨雷斯第三版的《数字图像处理》,如对细节内容感兴趣的读者可以查阅相关书籍进行参考。本篇博文的内容与原书内容的顺序有所出入,如有不足欢迎留言指正,谢谢。

1.图像退化与复原的原理

1.1 图像退化的数学模型

  简单来说,图像的退化是由于某种原因,图像从理想图像转变为实际我们看到的有瑕疵图像的过程。而图像复原,就是通过某种方法,将退化后的图像进行改善,尽量使复原后的图像接近理想图像的过程。那么,整个退化和复原的过程可以用如下图表示:

f(x,y)
退化函数h(x,y)
+
噪声η(x,y)
g(x,y)
复原滤波器
复原后的图像

  这里,我们将理想图像用 f ( x , y ) f(x,y) f(x,y)表示,将退化后的实际图像用 g ( x , y ) g(x,y) g(x,y)表示,退化过程可以分为退化函数 h ( x , y ) h(x,y) h(x,y)以及加载在图像上的噪声 η ( x , y ) \eta(x,y) η(x,y)表示,复原后的图像可以用 f ^ ( x , y ) \hat f(x,y) f^(x,y)表示。因此,整个图像退化的数学模型即为:
g ( x , y ) = h ( x , y ) ⋆ f ( x , y ) + η ( x , y ) g(x,y)=h(x,y)\star f(x,y)+\eta(x,y) g(x,y)=h(x,y)f(x,y)+η(x,y)
频 率 域 表 示 为 : G ( u , v ) = H ( u , v ) F ( u , v ) + N ( u , v ) 频率域表示为:G(u,v)=H(u,v)F(u,v)+N(u,v) G(u,v)=H(u,v)F(u,v)+N(u,v)
  其中, ⋆ \star 是卷积的符号,大写字母G(u,v)表示g(x,y)傅里叶变换后的函数,其他大写函数含义相同。
  因此,图像的退化过程可以理解为,经过了一次未知的退化函数卷积,并夹杂着噪声 η ( x , y ) \eta(x,y) η(x,y)的过程。

1.2 图像退化的原理

  我们假设,图像的退化过程为:
g ( x , y ) = H [ f ( x , y ) ] + η ( x , y ) g(x,y)=H[f(x,y)]+\eta(x,y) g(x,y)=H[f(x,y)]+η(x,y)
  其中,H是一个算子,具有线性(线性算子具有加性和均匀性)和位置不变性的特点。注意,上述假设是本篇博文内所有内容的前提假设,非常重要。
  一幅图像可以当做是对一个连续二维函数进行离散采样得到的,每个像素点上都通过一个冲激函数(也叫脉冲函数,即公式中的 δ ( x , y ) \delta(x,y) δ(x,y))对连续函数进行采样,因此,一幅二维图像可以表示为:
f ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( α , β ) δ ( x − α , y − β ) d α d β f(x,y)=\int_{-∞}^∞\int_{-∞}^∞f(\alpha,\beta)\delta(x-\alpha,y-\beta)d\alpha d\beta f(x,y)=f(α,β)δ(xα,yβ)dαdβ
  先不考虑加性噪声 η ( x , y ) \eta(x,y) η(x,y)的影响,即 η ( x , y ) = 0 \eta(x,y)=0 η(x,y)=0。所以退化过程变为:
g ( x , y ) = H [ f ( x , y ) ] = H [ ∫ − ∞ ∞ ∫ − ∞ ∞ f ( α , β ) δ ( x − α , y − β ) d α d β ] g(x,y)=H[f(x,y)]=H\bigg[\int_{-∞}^∞\int_{-∞}^∞f(\alpha,\beta)\delta(x-\alpha,y-\beta)d\alpha d\beta\bigg] g(x,y)=H[f(x,y)]=H[f(α,β)δ(xα,yβ)dαdβ]
  由于算子H具有线性特征,因此可以拓展到积分上(积分相当于求和)。另外,由于 f ( α , β ) f(\alpha,\beta) f(α,β)和x,y均无关,所以有:
g ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( α , β ) H [ δ ( x − α , y − β ) ] d α d β g(x,y)=\int_{-∞}^∞\int_{-∞}^∞f(\alpha,\beta)H[\delta(x-\alpha,y-\beta)]d\alpha d\beta g(x,y)=f(α,β)H[δ(xα,yβ)]dαdβ
  令 h ( x , α , y , β ) = H [ δ ( x − α , y − β ) ] h(x,\alpha,y,\beta)=H[\delta(x-\alpha,y-\beta)] h(x,α,y,β)=H[δ(xα,yβ)]称为系统H的冲击响应。又因为H算子具有位置不变性,再把忽略的噪声 η ( x , y ) \eta(x,y) η(x,y)加上后有:
g ( x , y ) = ∫ − ∞ ∞ ∫ − ∞ ∞ f ( α , β ) h ( x − α , y − β ) d α d β + η ( x , y ) g(x,y)=\int_{-∞}^∞\int_{-∞}^∞f(\alpha,\beta)h(x-\alpha,y-\beta)d\alpha d\beta+\eta(x,y) g(x,y)=f(α,β)h(xα,yβ)dαdβ+η(x,y)
  其中, ∫ − ∞ ∞ ∫ − ∞ ∞ f ( α , β ) h ( x − α , y − β ) d α d β \int_{-∞}^∞\int_{-∞}^∞f(\alpha,\beta)h(x-\alpha,y-\beta)d\alpha d\beta f(α,β)h(xα,yβ)dαdβ就是卷积的定义式,因此,退化过程可以表达为
g ( x , y ) = h ( x , y ) ⋆ f ( x , y ) + η ( x , y ) g(x,y)=h(x,y)\star f(x,y)+\eta(x,y) g(x,y)=h(x,y)f(x,y)+η(x,y)

1.3 图像复原的原理

  由于退化过程被建模为卷积的结果,因此,图像复原就是需要找到具有相反过程的卷积核,所以图像复原通常也叫做“图像去卷积”,所使用的复原滤波器也叫做“去卷积滤波器”。
  根据上述分析可知,想要将实际图像恢复成理想图像,主要要完成两个工作,一个是消除图像的噪声干扰,称为图像去噪;另一个则是找到复原滤波器,称为图像去卷积。

2. 图像去噪

2.1 噪声模型

  俗话说的好,知己知彼,百战不殆。要去除图像的噪声,首先要了解噪声的种类和性质。通常,图像的噪声模型就是噪声在图像中的像素值的统计特性,可以用概率统计中的概率密度函数(PDF)来表征,表示的是噪声在某个灰度级z产生的概率,一旦发生,则在图像中某个位置会出现一个灰度级为z的像素代替原像素。以下给出常见的噪声模型,其中,z表示噪声的灰度值, z ˉ \bar z zˉ表示噪声灰度值的均值, σ \sigma σ表示z的标准差。:
  1).高斯噪声
p ( z ) = 1 2 π σ e − ( z − z ˉ ) 2 / 2 σ 2 p(z)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\bar z)^2/2\sigma^2} p(z)=2π σ1e(zzˉ)2/2σ2
  高斯噪声通常源于诸如电子电路噪声及低照明度或高温带来的传感器噪声。高斯噪声的概率密度图像如下:
在这里插入图片描述
  2).瑞利噪声
p ( z ) = { 2 b ( z − a ) e − ( z − a ) 2 / b , z ≥ a 0 , z < a , 其 中 , z ˉ = a + π b / 4 , σ 2 = b ( 4 − π ) 4 p(z)=\begin{cases} \frac{2}{b}(z-a)e^{-(z-a)^2/b},z\ge a\\ 0,z<a \end{cases},其中,\bar z=a+\sqrt{\pi b/4},\sigma^2=\frac{b(4-\pi)}{4} p(z)={ b2(za)e(za)2/b,za0,z<a,,zˉ=a+πb/4 ,σ2=4b(4π)
  瑞利噪声常见于深度成像,其概率密度图像如下:
在这里插入图片描述
  3).伽马噪声
p ( z ) = { a b z b − 1 ( b − 1 ) ! e − a z , z ≥ a 0 , z < a , 其 中 , z ˉ = b a , σ 2 = b a 2 p(z)=\begin{cases} \frac{a^bz^{b-1}}{(b-1)!}e^{-az},z\ge a\\ 0,z<a \end{cases},其中,\bar z=\frac{b}{a},\sigma^2=\frac{b}{a^2} p(z)={ (b1)!abzb1eaz,za0,z<a

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值