Qwen2.5-Coder-32B-Instruct 是阿里云通义大模型团队于 2024 年 11 月 12 日开源的通义千问代码模型全系列中的旗舰模型。该模型在多个方面表现卓越,在 EvalPlus、LiveCodeBench、BigCodeBench 等十余个主流的代码生成基准上,均刷新了开源模型的得分纪录。同时,在考察代码修复能力的 Aider、多编程语言能力的 McEval 等 9 个基准上优于 GPT-4o,实现了开源模型对闭源模型的反超。
在代码推理方面,Qwen2.5-Coder-32B-Instruct 刷新了 CRUXEval-O 基准开源模型的最佳纪录,在 40 余种编程语言中表现优异。在 McEval 基准上取得了所有开闭源模型的最高分,并斩获考察多编程语言代码修复能力的 MdEval 基准的开源冠军。
Qwen2.5-Coder-32B-Instruct 已成为当前的 SOTA 开源代码模型,与 GPT-4o 的编码能力相匹配。在基准测试比较中,该模型在 LiveCodeBench、Spider 和 BIRD-SQL 指标上的表现优于 GPT-4o 和 Claude 3.5 Sonnet,在 MBPP、Aider 和 CodeArena 上落后,在 MultiPL-E 上显示出好坏参半的结果,在 HumanEval 和 McEval 基准测试中的表现也类似。新的 Qwen 2.5 Coder 模型在 aider 的代码编辑基准测试中表现非常出色。32B Instruct 模型的得分介于 GPT-4o 和 3.5。
Qwen2.5-Coder 全系列包括 0.5B/1.5B/3B/7B/14B/32B 等 6 个尺寸的全系列模型,每个尺寸都开源了 Base 和 Instruct 模型。其中,Base 模型可供开发者微调,Instruct 模型则是开箱即用的官方对齐模型,所有 Qwen2.5-Coder 模型在同等尺寸下均取得了模型效果最佳(SOTA)表现。
Qwen2.5-Coder 全系列开源,可适配更多应用场景,无论在端侧还是云上,都可以让 AI 大模型更好地协助开发者完成编程开发。即便是编程“小白”,也可基于内置 Qwen2.5-Coder 的代码助手和可视化工具,用自然语言对话生成网站、数据图表、简历和游戏等各类应用。
qwen2.5-coder 32b-instruct 的开源时间
2024 年 11 月 12 日,阿里云通义大模型团队宣布开源通义千问代码模型全系列,其中包括 Qwen2.5-Coder-32B-Instruct 模型。这一举措在业界引起了巨大的轰动。这个时间节点的选择,充分体现了阿里云在人工智能领域不断探索和创新的决心。随着技术的不断发展,开源代码模型的需求日益增长。在这个时候推出 Qwen2.5-Coder-32B-Instruct 模型,为开发者们提供了一个强大的工具,有助于推动人工智能在编程领域的应用和发展。同时,这个时间点也与行业内其他重大事件相互呼应,共同构成了一个充满活力的技术生态环境。
qwen2.5-coder 32b-instruct 的优势
Qwen2.5-Coder-32B-Instruct 具有多方面的优势。首先,它在代码生成方面表现出色。能够根据用户输入的自然语言描述,快速生成高质量的代码。无论是简单的小程序还是复杂的大型项目,该模型都能提供准确而高效的代码生成服务。其次,在代码修复方面,它可以帮助用户高效地修复代码错误,使编程过程更加顺畅。在代码推理方面,该模型也展现出了强大的能力,能够准确预测代码的执行结果,为开发者提供有力的支持。此外,Qwen2.5-Coder-32B-Instruct 具备良好的通用和数学能力,能够跨越 40 多种编程语言,在 Haskell 和 Racket 等语言上表现亮眼。同时,在多语言代码修复方面同样表现出色,大大降低了学习陌生语言的成本。
qwen2.5-coder 32b-instruct 的基准测试表现
在多个基准测试中,Qwen2.5-Coder-32B-Instruct 都取得了优异的成绩。在 EvalPlus、LiveCodeBench、BigCodeBench 等十余个主流的代码生成基准上,均刷新了开源模型的得分纪录。在考察代码修复能力的 Aider、多编程语言能力的 McEval 等 9 个基准上优于 GPT-4o,实现了开源模型对闭源模型的反超。在代码推理方面,Qwen2.5-Coder-32B-Instruct 刷新了 CRUXEval-O 基准开源模型的最佳纪录。在全球主流 AI 大模型开源社区 Hugging Face 的 Big Code Models Leaderboard 榜上,该模型排名第一。这些出色的表现充分证明了 Qwen2.5-Coder-32B-Instruct 的强大实力。
qwen2.5-coder 全系列模型特点
Qwen2.5-Coder 全系列模型具有多样化的特点。首先,该系列包括 0.5B、1.5B、3B、7B、14B 和 32B 等六个尺寸,满足不同开发者的需求。无论是轻量级的开发任务还是复杂的大型项目,都可以找到合适的版本。其次,每个尺寸都开源了 Base 和 Instruct 模型。Base 模型可供开发者微调,Instruct 模型则是开箱即用的官方对齐模型。此外,除 3B 模型采用 Research Only 许可外,其余模型均采用 Apache 2.0 许可证,为开发者提供更多使用灵活性。Qwen2.5-Coder 全系列模型在代码生成、代码推理、代码修复等核心任务性能上实现了显著提升,为 AI 编程带来了新的突破。
qwen2.5-coder 的应用场景
Qwen2.5-Coder 具有广泛的应用场景。对于编程“小白”来说,可以基于内置 Qwen2.5-Coder 的代码助手和可视化工具,用自然语言对话生成网站、数据图表、简历、游戏等各类应用。在实际的软件开发过程中,该模型可以帮助开发者提高编程效率,减少错误,加速项目的开发进度。同时,在代码修复、代码推理等方面的强大能力,也使得它在软件维护和优化方面发挥重要作用。此外,Qwen2.5-Coder 还可以应用于教育领域,帮助学生学习编程知识,提高编程能力。
Qwen2.5-Coder 32B-Instruct 模型作为阿里云通义大模型团队的重要成果,在开源时间、优势、基准测试表现、全系列模型特点以及应用场景等方面都展现出了强大的实力和广阔的发展前景。它的出现为人工智能在编程领域的应用带来了新的机遇和挑战,将进一步推动开源大模型在编程领域的发展。
qwen2.5-coder 与其他类似模型的比较
Qwen2.5-Coder是阿里云通义大模型团队推出的开源代码模型系列。在与其他类似模型的比较中,Qwen2.5-Coder展现出了强大的竞争力。
Qwen2.5-Coder的预训练数据集规模从7T tokens扩展到了18T tokens,知识涵盖更广。在MMLU基准中,Qwen2.5的得分相较于Qwen2有显著提升。例如,Qwen2.5-7B和72B在MMLU基准中的得分分别从70.3提升到74.2和从84.2提升到86.1。此外,Qwen2.5还在GPQA、MMLU-Pro、MMLU-redux和ARC-C等多个基准测试中有了明显提升。
在代码能力方面,由于Qwen2.5-Coder的突破,Qwen2.5在代码生成能力上大幅提升。Qwen2.5-72B在LiveCodeBench(2305-2409)、MultiPL-E和MBPP中的分别得分55.5、75.1和88.2,优于Qwen2-72B-Instruct的32.2、69.2和80.2。其中,Qwen2.5-Coder-32B-Instruct成为目前SOTA的开源代码模型,在多个流行的代码生成基准(如EvalPlus、LiveCodeBench、BigCodeBench)上都取得了开源模型中的最佳表现,官方称达到和GPT-4o有竞争力的表现。在EvalPlus、LiveCodeBench、BigCodeBench等十余个主流的代码生成基准上,均刷新了开源模型的得分纪录,并在考察代码修复能力的Aider、多编程语言能力的McEval等9个基准上优于GPT-4o,实现了开源模型对闭源模型的反超。
在数学能力方面,Qwen2.5-7B和Qwen2.5-72B在数学推理得分上分别从Qwen2-7B和Qwen2-72B的52.9和69.0上升到了75.5和83.1。
Qwen2.5-Coder系列模型覆盖了主流的六个模型尺寸,从0.5B到32B不等,以满足不同开发者的需求。每个尺寸都开源了Base和Instruct模型,其中,Base模型可供开发者微调,Instruct模型则是开箱即用的官方对齐模型。
综上所述,Qwen2.5-Coder在与其他类似模型的比较中,在知识涵盖、代码能力、数学能力以及模型尺寸多样性等方面都具有显著优势。
qwen2.5-coder 知识涵盖优势
Qwen2.5-Coder 在知识涵盖方面具有显著优势。与前代模型相比,Qwen2.5 的知识涵盖更广。例如,在 MMLU 基准中,Qwen2.5-7B 和 72B 的得分相较于 Qwen2 分别从 70.3 提升到 74.2,和从 84.2 提升到 86.1。此外,Qwen2.5 还在 GPQA、MMLU-Pro、MMLU-redux 和 ARC-C 等多个基准测试中有了明显提升。这意味着 Qwen2.5-Coder 能够掌握更多的知识,为用户提供更准确、更全面的回答。在实际应用中,无论是处理专业知识问题,还是进行逻辑推理,Qwen2.5-Coder 都能凭借其丰富的知识储备发挥出色。
qwen2.5-coder 代码能力优势
Qwen2.5-Coder 在代码能力方面表现卓越。它基于 Qwen2.5 基础大模型进行初始化,通过 5.5T tokens 的数据持续训练,实现了代码生成、代码推理、代码修复等核心任务性能的显著提升。Qwen2.5-Coder 的旗舰模型 Qwen2.5-Coder-32B-Instruct 在多个热门代码生成基准上表现优异,成为开源模型中的佼佼者,且具备与 GPT-4o 相近的实力。在代码修复基准 Aider 上,该模型得分 73.7,表现与 GPT-4o 相当。此外,Qwen2.5-Coder 全系列开源,可适配更多应用场景,无论在端侧还是云上,都可以让 AI 大模型更好地协助开发者完成编程开发。即便是编程“小白”,也可基于内置 Qwen2.5-Coder 的代码助手和可视化工具,用自然语言对话生成网站、数据图表、简历和游戏等各类应用。
qwen2.5-coder 数学能力优势
Qwen2.5-Coder 在数学能力方面也十分突出。在 MATH 基准测试中,Qwen2.5-7B 和 Qwen2.5-72B 在数学推理得分上分别从 Qwen2-7B 和 Qwen2-72B 的 52.9 和 69.0 上升到了 75.5 和 83.1。这表明 Qwen2.5-Coder 不仅在代码生成方面功能强大,在解决数学问题方面也是如此。7B 模型在 GSM8K 方面显示出了非常高的准确率,达到 83.9%,比 7B 模型有了显著提高。这些结果证明了 Qwen2.5-Coder 在数学问题求解方面的出色能力。
qwen2.5-coder 模型尺寸多样性优势
Qwen2.5-Coder 具有模型尺寸多样性的优势。目前,Qwen2.5-Coder 已覆盖 0.5B、1.5B、3B、7B、14B 和 32B 六种主流模型尺寸,满足不同开发者的需求。无论是轻量级还是复杂场景,开发者都可以找到合适的版本。这种多样化的选择不仅使得 Qwen2.5-Coder 更加实用,也为开发者们提供了更多的可能性。例如,对于一些资源受限的设备或项目,开发者可以选择较小尺寸的模型;而对于需要处理大规模数据和复杂任务的场景,较大尺寸的模型则能够提供更强大的性能。
Qwen2.5-Coder 在与其他类似模型的比较中展现出了多方面的优势。在知识涵盖方面,它掌握了更多的知识,能够为用户提供更全面的回答。在代码能力方面,它实现了代码生成、推理和修复等核心任务性能的显著提升,甚至在某些方面超越了闭源模型 GPT-4o。在数学能力方面,它的表现也十分出色,准确率高。此外,其模型尺寸的多样性为开发者提供了更多的选择,适应不同的应用场景。总的来说,Qwen2.5-Coder 是一款功能强大、实用性高的开源代码模型,为开发者们带来了全新的选择和机遇。