多模态知识蒸馏(MKD)

多模态知识蒸馏(Multimodal Knowledge Distillation,MKD)是一种结合了多模态学习和知识蒸馏的技术,旨在将大型复杂模型(教师模型)的知识传递给小型简单模型(学生模型),同时处理多模态数据的复杂性。MKD在多模态任务中具有广泛的应用前景,如图文匹配、视频理解等。

MKD的研究方向包括跨模态知识传递、多模态表示学习、模态特定蒸馏策略、小样本学习与蒸馏、适应性与泛化能力、端到端训练与优化、新的评价准则以及应用场景探索等方面。这些研究方向需要考虑不同模态间的关联性和差异性,设计合理的模型结构和训练策略,以确保在实际应用中的有效性。
跨模态知识蒸馏 | 通过组合对比学习蒸馏音频 … hub.baai.ac.cn

此外,MKD还涉及到如何有效地融合不同模态的信息,例如通过注意力机制或图网络来提高小模型的性能。 在特定应用中,MKD可以用于医疗影像、情感分析、推荐系统等领域,以提升模型的性能和适应性。
多模态预训练模型综述_多模态模型预训练-CSDN博客
一种基于模态感知蒸馏网络的肝细胞癌预测方法

MKD不仅是一种模型压缩方法,也提供了一个通用的知识蒸馏框架,未来可能在半监督学习等众多领域发挥作用。然而,MKD在少样本设置下的脆弱性问题仍需进一步研究和解决。

多模态知识蒸馏(MKD)在图文匹配和视频理解中的应用案例有哪些?

多模态知识蒸馏(MKD)在图文匹配和视频理解中的应用案例主要集中在以下几个方面:

在视频问答任务中,多模态知识蒸馏被用于提升对象关系推理和答案生成的准确性和效率。例如,一种基于知识蒸馏的视频问答模型通过引入多模态知识蒸馏,压缩模型并利用大型模型的丰富多模态知识,增强小模型的特征学习能力。教师模型和学生模型结构相同,仅在图层数量上略有差异,通过参数调整获得最优教师模型,然后构建简化的学生模型,利用教师模型的融合视觉特征作为“软标签”,指导学生模型学习外观和运动特征。

跨模态知识蒸馏方法AMID被用于视频识别和检索任务。AMID通过最大限度地将教师与辅助模态模型之间的互信息(MI)转移到学生,同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值