CoE(专家协同)技术架构?怎么落地的?

CoE(专家协同)技术架构的全方位解析

一、CoE(专家协同)技术架构的定义和特点

CoE(Collaboration - of - Experts,专家协同)技术架构是一种创新的架构模式,旨在通过整合多个专家模型和资源,实现协同工作以解决各种复杂任务。以360的CoE架构为例,它具有以下显著特点:

  • 多模型整合 :
    • 并非只接入一家企业的模型,如由360牵头,百度、腾讯、阿里巴巴、智谱AI、Minimax、月之暗面等16家国内主流大模型厂商合作打造,目前已接入这些企业的54款大模型产品,未来预计全量接入100多款大模型产品。这使得它能够汇聚众多模型的优势资源,在面对不同类型的任务时,可以调用不同模型的能力,就像拥有一个庞大的知识和能力库,涵盖了各种领域的智慧结晶。
    • 不仅接入大模型,还接入很多十亿甚至更小参数的专家模型。这种大小模型的结合是非常巧妙的设计,大模型在处理复杂、宏观的任务时发挥作用,而小模型在回答简单问题时能够被调用,这样既可以让最强的模型应对最难的问题,又能在回答简单问题时调用更精准的小模型,在获得高质量回答的同时,节约推理资源、提升响应速度。例如在日常简单的搜索查询中,小模型可以快速给出准确答案,而在处理深度复杂的自然语言处理任务时,大模型则可大展身手。
  • 实现“快思考”与“慢思考” :
    • 借鉴了大脑的功能分区结构,根据任务阶段,调动各功能中枢协同工作。例如,在处理任务时,第一个模型负责给出初步回答(类似“快思考”),第二个模型则会进行反思与纠错,第三个模型则会总结并优化最终答案(类似“慢思考”)。这种分工协作的模式,使得CoE架构在推理任务中的表现更加灵活且精准,尤其在处理复杂问题时,能与OpenAI o1 - preview媲美,甚至在某些场景下更胜一筹。这一特性使得模型能够像人类大脑一样,既有快速的直觉反应,又有深入的分析思考能力,从而提升回答的准确性和可靠性。
  • 提升系统智能性 :
    • 通过思维链(Chain - of - Thought,CoT)和多系统协同的方式,CoE架构让各个模型之间能够相互协作、配合,从而获得其所接入的所有大模型本不具备的能力。比如它能够通过意图识别模型,更加理解用户的实际需求;通过任务分解路由模型,让各大模型、小模型之间协同配合,从而提升整个系统的智能水平,使系统不仅仅是各个模型的简单叠加,而是产生了协同效应后的更强大的智能体。

二、CoE(专家协同)技术架构落地的成功案例

  • 360AI搜索 :
    • 360AI搜索是CoE架构非常成功的落地应用案例。在其背后,CoE架构起到了至关重要的支撑作用。在2024年1月诞生后的八九个月时间里,360AI搜索就超越PerplexityAI,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值