多智能体系统(Multi-Agent System, MAS)是由多个自主智能体通过交互协作完成复杂任务的分布式系统。以下从定义、核心特征、系统架构、应用领域及关键技术等方面进行详细阐述:
定义与核心特征
-
定义
MAS是由多个具有自主性的智能体组成的集合,这些智能体可以是软件程序、机器人或人类团队。每个智能体能独立感知环境、做出决策并与其他智能体交互,共同解决单一智能体难以完成的问题。 -
关键特征
-
自治性:每个智能体独立控制自身行为,无需中央指令。
-
容错性:单个智能体故障不会导致系统崩溃,其他智能体可自适应调整。
-
协作与竞争:智能体通过合作或竞争实现目标,协调机制由环境规则或算法控制。
-
分布式结构:系统通过去中心化设计提高灵活性和可扩展性。
-
环境互动:智能体通过观察和动作影响环境,形成动态反馈循环。
-
系统架构类型
-
集中式MAS
- 所有智能体受单一中央控制器指挥,通信需经中枢节点。
- 优势:协调简单;劣势:存在单点故障风险,扩展性差。
-
去中心化MAS
- 多个子控制器分区域管理智能体,控制器间可双向通信。
- 优势:鲁棒性较强,局部故障不影响全局。
-
分布式MAS
- 智能体完全自主,直接与其他智能体或环境交互。
- 优势:高灵活性和并行性;劣势:可能产生复杂行为冲突。
应用领域
-
机器人协同
- 多机器人协同导航、任务分配(如无人机编队、工业机器人协作)。
- 案例:佛山研究院的多机器人系统通过动态规划实现分布式控制。
-
智能交通与自动驾驶
-
车辆协同避障、路径规划,如基于深度强化学习的自动驾驶安全辅助系统。
-
通过多智能体奖励机制优化交通流与事故响应。
-
-
能源与电网管理
- 智能电网中的负载调度、分布式能源协调,利用MAS实现高效需求侧管理。
-
社会经济模拟
- 模拟市场交易、群体行为动态,为政策制定提供工具。
-
艺术与工程
- 生成式艺术中通过MAS模拟物理现象(如能量最小化)实现创作。
关键技术
-
多智能体强化学习(MARL)
- 采用策略梯度方法调整参数,通过集中式批评家评估动作价值,最小化时间差错误(TD误差)优化策略。
- 奖励设计:例如区域覆盖任务中,奖励与覆盖面积正相关。
-
协同推理与分布式算法
- 通过分布式算法解决网络优化、资源分配等问题,如城市交通信号协同控制。
-
混合架构设计
- 结合集中式训练与分布式执行(CTDE),例如DDMDAC方法在训练层集中优化策略