“慧眼识交通”系统是一系列智慧交通解决方案的统称,不同地区和机构开发的“慧眼”系统在技术与算法上各有侧重,但核心技术主要围绕深度学习、计算机视觉、多传感器融合和大数据分析展开。以下是具体分析:
一、核心技术架构
-
深度学习与神经网络模型
- 系统普遍采用 卷积神经网络(CNN) 和多任务神经网络模型,用于车辆识别、违法行为抓拍(如闯红灯、违停)和行人行为分析(如跨越围栏)。例如,吕超团队研发的“慧眼识交通”系统通过4个月的训练即实现隧道交通事故秒级报警,准确率达99.6%。
- 知识图谱与关联算法被用于复杂场景的违规事件研判,如广州“交通慧眼”平台通过分析车辆运营状态与交通数据关联,精准识别套牌车、伪造车等行为。
-
计算机视觉与视频结构化处理
- 利用视频结构化技术提取关键特征:如出租车计价器状态、客运车辆线路标识、车牌颜色(蓝牌、绿牌等)。
- 人脸识别技术用于检测无证驾驶、准驾不符等行为,例如创视睿的“慧眼”系统可实时采集驾驶人员面部信息并与数据库比对。
-
多模态传感器融合
- 结合毫米波雷达、激光雷达、摄像头等设备,实现全天候监测。例如浙江智慧高速通过每250米布设的毫米波雷达与视频设备,30秒内发现事故并启动管控。
- 能见度监测传感器(光学、微波)用于环境监测,辅助交通管理者发布路况预警。
二、算法与功能实现
-
异常事件实时预警
- 基于熵值突变模型和自适应场景切换技术,即使在摄像头盲区也能预测路网运行态势,例如“慧眼达”系统可在极端环境下实时报警。
- 广州知行研发的 “高速违规停车监测算法” 结合大疆的硬件支持,实现高速公路违停行为的智能化识别。
-
交通流量优化与决策
- 海信的“慧眼”系统通过大数据实时分析,将拥堵情况、在途车辆、路口流量等数据可视化,辅助交警动态调整信号灯。
- 深圳鸿逸达系统利用三维扫描技术分析路口通行目标运动轨迹,自动优化信号灯调度,减少行人等待时间。
-
精准执法与违规研判
- 广州“交通慧眼”平台开发了十余种视频智能识别算法,结合交通大数据自动研判车辆运营状态,支持20余种违规告警应用(如超速、非法营运)。
- 天津“慧眼系统”通过电子警察与POS机联动,实时推送违法信息,实现动态违法(如闯红灯)与静态违法(车辆漏检)的精准拦截。
三、数据与硬件支撑
-
海量视频资源接入
- 广州“交通慧眼”累计接入20多万路视频,覆盖高快速路、出租车、停车场等场景;成都慧视的智能摄像机支持高分辨率输入与弱小目标跟踪。
- 部分系统采用边缘计算(如车载智能终端)实现数据快速处理,减少云端依赖。
-
多源数据融合分析
- 结合卫星定位、GIS地理信息、历史交通数据等,提升决策准确性。例如,交通网络决策分析需整合气象数据、轨迹数据等优化疏堵方案。
四、应用效果与创新
- 效率提升:广州“交通慧眼”使执法人力成本降低60%,违规研判精度达95%;浙江智慧高速实现事故1分钟内启动主动管控。
- 跨领域扩展:天津铁塔的“慧眼识津”平台衍生出交通、工地、疫情等多场景应用,实现非现场监管。
总结
“慧眼识交通”系统的技术核心在于深度学习驱动的智能感知与多源数据融合的决策能力,结合硬件创新(如雷达、边缘设备)和算法优化(如知识图谱、视频结构化),实现了从违法识别到交通调度的全链条智能化,成为现代智慧城市交通管理的核心工具。