一、地面不平整环境下的稳定性控制核心挑战
人形机器人面对复杂地形时,其稳定性控制需突破三大动力学难题:
-
动态平衡维持
地面高度突变(≤18cm)导致支撑多边形动态收缩,零力矩点(ZMP)稳定域缩减达40%,需在200ms内完成重心调整与步态修正。 -
接触力突变响应
石子路/草地等地形接触刚度差异可达3个数量级,冲击力瞬时峰值超过额定扭矩50%,要求驱动系统具备毫秒级抗饱和能力。 -
多自由度耦合控制
28+自由度系统在斜坡行走时,关节力矩分配的维度灾难使传统QP求解时间超过实时性阈值(>10ms),需开发新型优化算法。
二、动力学建模创新方法
为应对复杂地形,现代稳定性控制系统采用分层建模架构(图1):
全局地形动力学层 → 多体系统动力学层 → 关节执行器动力学层
1. 地形交互模型
基于虚拟黏弹性肌肉理论构建地形响应预测器:
F_{terrain} = k_{virtual} \cdot \Delta h + c_{virtual} \cdot \frac{d(\Delta h)}{dt}
其中$ k_{virtual} 和和和 c_{virtual} $为虚拟刚度/阻尼系数,通过LQR优化实现地形高度突变(Δh≤6cm)的主动柔顺控制,使冲击力降低62%。
2. 混杂系统动力学建模
结合倒立摆模型与多刚体动力学:
- 单支撑相采用3D线性倒立摆模型,计算效率提升5倍
- 双支撑相切换为28自由度完整模型,通过李雅普诺夫函数验证切换稳定性
- 引入脉冲响应分析处理地面-足底冲击动力学,将碰撞能量耗散率提升至92%
3. **实时模型简化技术
开发基于神经网络的降阶模型(ROM):
- 使用LSTM网络预测高维动力学方程的关键模态,维度从34维降至8维
- 在BH6-6P平台实现1.8km/h行走速度下的实时控制
三、关键控制策略与技术实现
1. ZMP动态调控技术
构建双闭环ZMP控制器:
\begin{cases}
\dot{x}_{ZMP} = A x + B u + \Gamma d_{terrain} \\
u = -K \cdot (x_{ref} - \hat{x})
\end{cases}
- 内环:基于FSR阵列的ZMP估计器,采样率1kHz
- 外环:模型预测控制(MPC)滚动优化未来1.2s轨迹
- 实验显示在15cm高度差地形ZMP偏移量控制在±2cm内
2. 步态自适应生成算法
开发地形感知步态规划器:
- 地形特征提取:通过ToF相机与IMU融合,建立地形高程图(分辨率5mm)
- 步态参数化:
- 步长$ L = f(\nabla h) $
- 抬腿高度$ H_{swing} = 1.5h_{max} + \epsilon $
- 动态步态库匹配:预存20种基础步态,通过DTW算法实时匹配
3. 关节级抗扰动控制
创新混合驱动控制架构:
| 控制模式 | 适用场景 | 技术特性 |
|---|---|---|
| 阻抗控制 | 常规行走 | 刚度矩阵$ K_p=diag[200,200,150] $ N/m |
| 导纳控制 | 软地面 | 虚拟惯量$ M_v=0.8M_{real} $ |
| 滑模控制 | 突发冲击 | 切换函数$ s=\dot{e}+10e $ |
| 实验表明该架构使关节扭矩超调量从28%降至7% |
四、传感器融合与状态估计
构建多模态数据融合网络(图2):

最低0.47元/天 解锁文章
3219

被折叠的 条评论
为什么被折叠?



