一、核心技术能力体系
1. 编程与算法实现能力
-
多语言开发:
- C++:用于实时系统开发,需掌握模板元编程优化点云处理性能,例如使用Eigen库实现矩阵运算加速。
- Python:主要用于算法原型验证,如基于PyTorch实现动态目标跟踪算法的快速迭代。
- 脚本工具:熟练使用Bash脚本自动化处理大规模点云数据集(如KITTI、nuScenes)。
-
算法设计与优化:
- 传统算法:实现RANSAC平面分割时,需结合KD-Tree加速近邻搜索,将单帧处理时间控制在5ms内。
- 深度学习模型:掌握PointPillars等3D检测网络的TensorRT部署技巧,在Jetson AGX上实现30FPS实时推理。
- 内存管理:优化点云数据存储结构,使用PCL库的Octree压缩技术将内存占用降低40%。
2. 数学与工程学基础
-
3D几何与优化理论:
- 理解ICP算法中SVD分解的数学本质,能推导点云配准的误差函数收敛性证明。
- 在因子图优化中,构建激光SLAM的位姿节点与地标节点约束关系,使用Ceres Solver实现后端优化。
-
概率与滤波理论:
- 设计扩展卡尔曼滤波(EKF)融合IMU与激光里程计数据,处理急转弯场景下的状态估计漂
激光雷达算法工程师能力与培养路径

最低0.47元/天 解锁文章
436

被折叠的 条评论
为什么被折叠?



